论文标题
$ \ ell_p $中的立方体切片的弹性
Resilience of cube slicing in $\ell_p$
论文作者
论文摘要
鲍尔(Ball)著名的立方体切片(1986年)断言,在$ \ mathbb {r}^n $的超平面部分中,中央部分正交至$(1,1,0,\ dots,0)$具有最大的体积。我们表明,当$ p> 10^{15} $切片$ \ ell_p $ balls仍然存在相同的成本,并且相同的超平面以$ 1 <q <q <1 + 10^{ - 12} $最小化$ \ ell_q $ balls的投影量。这扩展了Szarek的最佳Khinchin Inquality(1976),它对应于$ Q = 1 $。因此,这些结果涉及球 - szarek超平面在范围内的弹性,$ 2 <p <\ infty $和$ 1 <q <2 $,自Koldobsky(1998),Barthe-Naor(2002)和Oleszkiewicz(2003)以来,对极端变量的分析一直难以捉摸。
Ball's celebrated cube slicing (1986) asserts that among hyperplane sections of the cube in $\mathbb{R}^n$, the central section orthogonal to $(1,1,0,\dots,0)$ has the greatest volume. We show that the same continues to hold for slicing $\ell_p$ balls when $p > 10^{15}$, as well as that the same hyperplane minimizes the volume of projections of $\ell_q$ balls for $1 < q < 1 + 10^{-12}$. This extends Szarek's optimal Khinchin inequality (1976) which corresponds to $q=1$. These results thus address the resilience of the Ball--Szarek hyperplane in the ranges $2 < p < \infty$ and $1 < q < 2$, where analysis of the extremizers has been elusive since the works of Koldobsky (1998), Barthe--Naor (2002) and Oleszkiewicz (2003).