论文标题
部分可观测时空混沌系统的无模型预测
PEMP: Leveraging Physics Properties to Enhance Molecular Property Prediction
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
Molecular property prediction is essential for drug discovery. In recent years, deep learning methods have been introduced to this area and achieved state-of-the-art performances. However, most of existing methods ignore the intrinsic relations between molecular properties which can be utilized to improve the performances of corresponding prediction tasks. In this paper, we propose a new approach, namely Physics properties Enhanced Molecular Property prediction (PEMP), to utilize relations between molecular properties revealed by previous physics theory and physical chemistry studies. Specifically, we enhance the training of the chemical and physiological property predictors with related physics property prediction tasks. We design two different methods for PEMP, respectively based on multi-task learning and transfer learning. Both methods include a model-agnostic molecule representation module and a property prediction module. In our implementation, we adopt both the state-of-the-art molecule embedding models under the supervised learning paradigm and the pretraining paradigm as the molecule representation module of PEMP, respectively. Experimental results on public benchmark MoleculeNet show that the proposed methods have the ability to outperform corresponding state-of-the-art models.