论文标题

部分可观测时空混沌系统的无模型预测

Reoptimization Nearly Solves Weakly Coupled Markov Decision Processes

论文作者

Gast, Nicolas, Gaujal, Bruno, Yan, Chen

论文摘要

储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。

We propose a new policy, called the LP-update policy, to solve finite horizon weakly-coupled Markov decision processes. The latter can be seen as multi-constraint multi-action bandits, and generalize the classical restless bandit problems. Our solution is based on re-solving periodically a relaxed version of the original problem, that can be cast as a linear program (LP). When the problem is made of $N$ statistically identical sub-components, we show that the LP-update policy becomes asymptotically optimal at rate $O(T^2/\sqrt{N})$. This rate can be improved to $O(T/\sqrt{N})$ if the problem satisfies some ergodicity property and to $O(1/N)$ if the problem is non-degenerate. The definition of non-degeneracy extends the same notion for restless bandits. By using this property, we also improve the computational efficiency of the LP-update policy. We illustrate the performance of our policy on randomly generated examples, as well as a generalized applicant screening problem, and show that it outperforms existing heuristics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源