论文标题

多建筑:用于端到端建筑物提取的多边形变压器

PolyBuilding: Polygon Transformer for End-to-End Building Extraction

论文作者

Hu, Yuan, Wang, Zhibin, Huang, Zhou, Liu, Yu

论文摘要

我们提出了多建筑,这是一种用于构建提取的完全端到端的多边形变压器。多建筑直接预测建筑物从遥感图像中的矢量表示。它建立在编码器变压器架构上,同时输出构建边界框和多边形。给定一组多边形查询,该模型了解了它们之间的关系,并从图像中编码上下文信息,以预测具有固定顶点编号的最终构建多边形的集合。进行角分类是为了区分建筑物的角落与采样点,该点可用于在推理过程中沿着建筑物墙壁沿冗余顶点。进一步应用1-D非最大抑制(NMS),以减少建筑物角附近的顶点冗余。通过改进操作,可以有效地获得具有规则形状和低复杂性的多边形。在Crowdai数据集上进行了全面的实验。定量和定性结果表明,我们的方法的表现要优于先前的多边形构建方法,较大的边缘。它还在像素级覆盖范围,实例级别的精度和回忆以及几何级属性(包括轮廓规则性和多边形复杂性)方面,实现了新的最新最新。

We present PolyBuilding, a fully end-to-end polygon Transformer for building extraction. PolyBuilding direct predicts vector representation of buildings from remote sensing images. It builds upon an encoder-decoder transformer architecture and simultaneously outputs building bounding boxes and polygons. Given a set of polygon queries, the model learns the relations among them and encodes context information from the image to predict the final set of building polygons with fixed vertex numbers. Corner classification is performed to distinguish the building corners from the sampled points, which can be used to remove redundant vertices along the building walls during inference. A 1-d non-maximum suppression (NMS) is further applied to reduce vertex redundancy near the building corners. With the refinement operations, polygons with regular shapes and low complexity can be effectively obtained. Comprehensive experiments are conducted on the CrowdAI dataset. Quantitative and qualitative results show that our approach outperforms prior polygonal building extraction methods by a large margin. It also achieves a new state-of-the-art in terms of pixel-level coverage, instance-level precision and recall, and geometry-level properties (including contour regularity and polygon complexity).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源