论文标题
部分可观测时空混沌系统的无模型预测
$(b, ν)$-algebras and their twisted modules
论文作者
论文摘要
我们给出了给定的严格unital $ a_ \ infty $ -category $ {\ cal a} $的Shift $ \ wideHat {\ cal a} $的固有表征。我们研究了其较高操作的一些算术属性和在其$ a_ \ infty $ - twisted模块的$ a_ \ infty $类别的Cocycles $ {\ cal Z}的预定范围内的特殊融合。我们展示了$ {\ cal z}(\ wideHat {\ cal a})$的结构,类似于特殊的frobenius类别。我们得出的是,共同体类别$ {\ cal h}(\ wideHat {\ cal a})$作为相应的稳定类别出现,然后我们回顾一下这意味着$ {\ cal h}(\ wideHat {\ wideHat {\ cal a})$是一个trianguality类别。
We give an intrinsic characterization of the closure under shifts $\widehat{\cal A}$ of a given strictly unital $A_\infty$-category ${\cal A}$. We study some arithmetical properties of its higher operations and special conflations in the precategory of cocycles ${\cal Z}({\cal A})$ of its $A_\infty$-category of twisted modules. We exhibit a structure for ${\cal Z}(\widehat{\cal A})$ similar to a special Frobenius category. We derive that the cohomology category ${\cal H}(\widehat{\cal A})$ appears as the corresponding stable category and then we review how this implies that ${\cal H}(\widehat{\cal A})$ is a triangulated category.