论文标题
爱德华兹(Edwards)模型的类似物2曲线属的雅各布人
An analog of the Edwards model for Jacobians of genus 2 curves
论文作者
论文摘要
我们给出了属2曲线的jacobian的p^3 x p^3的显式方程,该方程为椭圆曲线的爱德华兹曲线模型的阿贝尔表面提供了自然的类似物。与p^{15}中的标准版本相比,这给出了对雅各布品种的简洁描述。我们还提供了一个条件,在爱德华兹曲线上,阿贝尔表面具有普遍的群体法律。
We give the explicit equations for a P^3 x P^3 embedding of the Jacobian of a curve of genus 2, which gives a natural analog for abelian surfaces of the Edwards curve model of elliptic curves. This gives a much more succinct description of the Jacobian variety than the standard version in P^{15}. We also give a condition under which, as for the Edwards curve, the abelian surfaces have a universal group law.