论文标题

伪andom(类似功能的)量子状态发电机:新的定义和应用程序

Pseudorandom (Function-Like) Quantum State Generators: New Definitions and Applications

论文作者

Ananth, Prabhanjan, Gulati, Aditya, Qian, Luowen, Yuen, Henry

论文摘要

伪量子量子状态(PRS)是有效构造的状态,在计算上与HAAR随机无法区分,并且最近发现了加密应用。我们探讨了伪随机国家的新定义,新属性和应用,并提供以下贡献: 1。新定义:我们研究由Ananth,Qian和Yuen(crypto'22)引入的伪函数函数状态(PRFS)发电机的变体,即使发电机可以自适应地或倍姿化或倍端进行自适应,即使发电机也可以存在。假设存在量子后单向函数,我们显示了这些变体的可行性。 2。经典交流:我们表明,具有对数输出长度的PRS发电机意味着承诺和具有经典交流的加密方案。 PRS发电机的此类方案的先前构造需要量子通信。 3。简化的证明:我们给出了Brakerski-shmueli(TCC'19)的更简单证明,结果表明,具有随机二进制相的均匀叠加状态的多项式副本与Haar-random状态没有区别。 4。计算假设的必要性:我们还表明,在关键长度上具有输出长度对数(或更大)的安全PR必须需要计算假设。

Pseudorandom quantum states (PRS) are efficiently constructible states that are computationally indistinguishable from being Haar-random, and have recently found cryptographic applications. We explore new definitions, new properties and applications of pseudorandom states, and present the following contributions: 1. New Definitions: We study variants of pseudorandom function-like state (PRFS) generators, introduced by Ananth, Qian, and Yuen (CRYPTO'22), where the pseudorandomness property holds even when the generator can be queried adaptively or in superposition. We show feasibility of these variants assuming the existence of post-quantum one-way functions. 2. Classical Communication: We show that PRS generators with logarithmic output length imply commitment and encryption schemes with classical communication. Previous constructions of such schemes from PRS generators required quantum communication. 3. Simplified Proof: We give a simpler proof of the Brakerski--Shmueli (TCC'19) result that polynomially-many copies of uniform superposition states with random binary phases are indistinguishable from Haar-random states. 4. Necessity of Computational Assumptions: We also show that a secure PRS with output length logarithmic, or larger, in the key length necessarily requires computational assumptions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源