论文标题

球体中球体的惯性迁移

Inertial migration of a sphere in plane Couette flow

论文作者

Anand, Prateek, Subramanian, Ganesh

论文摘要

我们研究了壁挂式平面couette中无扭矩浮力球的惯性迁移,该球体在宽阔的雷诺数字($ re_c $)上,在小粒子雷诺数号,($ re_p \ ll1 $)和约束比($λ\ ll1 $ ll1 $)中。在这里,$ re_c = v_ \ text {wall} h/ν$其中$ h $表示通道墙之间的分离,$ v_ \ text {wall} $表示移动墙的速度,$ν$是牛顿式悬浮油的运动粘度; $λ= a/h $,$ a $是球形半径,$ re_p =λ^2 re_c $。发现频道中心线是关键$ re_c \,(\大约148)$下方唯一的(稳定)\,平衡,与早期的小$ re_c $分析的预测一致。关键$ re_c $上的超临界干草叉分叉产生了一对稳定的偏心平衡,相对于中心线对称地位于中心线,而原始的中心线平衡同时变得不稳定。新的均衡会随着$ re_c $的增加而迁移墙。与基于最新计算的推论相反,上述分叉发生在任意小$ re_p $提供的$λ$的情况下,足够小。在二维场景中发生了类似的分叉,也就是说,对于在平面couette流中自由悬浮的圆柱体,关键的$ re_c $约为$ 110 $。

We study the inertial migration of a torque-free neutrally buoyant sphere in wall-bounded plane Couette flow over a wide range of channel Reynolds numbers, $Re_c$, in the limit of small particle Reynolds number\,($Re_p\ll1$) and confinement ratio\,($λ\ll1$). Here, $Re_c = V_\text{wall}H/ν$ where $H$ denotes the separation between the channel walls, $V_\text{wall}$ denotes the speed of the moving wall, and $ν$ is the kinematic viscosity of the Newtonian suspending fluid; $λ= a/H$, $a$ being the sphere radius, with $Re_p=λ^2 Re_c$. The channel centerline is found to be the only (stable)\,equilibrium below a critical $Re_c\,(\approx 148)$, consistent with the predictions of earlier small-$Re_c$ analyses. A supercritical pitchfork bifurcation at the critical $Re_c$ creates a pair of stable off-center equilibria, symmetrically located with respect to the centerline, with the original centerline equilibrium simultaneously becoming unstable. The new equilibria migrate wallward with increasing $Re_c$. In contrast to the inference based on recent computations, the aforementioned bifurcation occurs for arbitrarily small $Re_p$ provided $λ$ is sufficiently small. An analogous bifurcation occurs in the two-dimensional scenario, that is, for a circular cylinder suspended freely in plane Couette flow, with the critical $Re_c$ being approximately $110$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源