论文标题

Quack:通过Koopman操作员学习加速基于梯度的量子优化

QuACK: Accelerating Gradient-Based Quantum Optimization with Koopman Operator Learning

论文作者

Luo, Di, Shen, Jiayu, Dangovski, Rumen, Soljačić, Marin

论文摘要

传统上,量子优化是量子计算的关键应用,它被梯度计算的复杂性随着参数数量的增加而受到阻碍。这项工作弥合了Koopman操作员理论之间的差距,该理论发现了应用程序中的实用性,因为它允许对非线性动力学系统的线性表示,而自然梯度方法则在量子优化中进行了自然梯度方法,从而导致基于梯度的量子优化的显着加速。我们提出了量子电路交替控制的Koopman学习(QUACK),这是一个新型框架,利用交替的算法来有效预测量子计算机上的梯度动力学。我们证明了Quack在量子优化和机器学习方面的一系列应用中加速基于梯度的优化的非凡能力。实际上,我们的经验研究,跨越量子化学,量子凝结物,量子机器学习和嘈杂的环境,已经显示出超过2次超过200倍的加速度的加速度,在平滑状态下的10倍加速,在非平滑状态下加速了3x加速。借助Quack,我们提供了一个强大的进步,可以利用基于梯度的量子优化的优势来实践利益。

Quantum optimization, a key application of quantum computing, has traditionally been stymied by the linearly increasing complexity of gradient calculations with an increasing number of parameters. This work bridges the gap between Koopman operator theory, which has found utility in applications because it allows for a linear representation of nonlinear dynamical systems, and natural gradient methods in quantum optimization, leading to a significant acceleration of gradient-based quantum optimization. We present Quantum-circuit Alternating Controlled Koopman learning (QuACK), a novel framework that leverages an alternating algorithm for efficient prediction of gradient dynamics on quantum computers. We demonstrate QuACK's remarkable ability to accelerate gradient-based optimization across a range of applications in quantum optimization and machine learning. In fact, our empirical studies, spanning quantum chemistry, quantum condensed matter, quantum machine learning, and noisy environments, have shown accelerations of more than 200x speedup in the overparameterized regime, 10x speedup in the smooth regime, and 3x speedup in the non-smooth regime. With QuACK, we offer a robust advancement that harnesses the advantage of gradient-based quantum optimization for practical benefits.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源