论文标题

廉价因果卷积的自动序列推荐

Self-Attentive Sequential Recommendation with Cheap Causal Convolutions

论文作者

Chen, Jiayi, Wu, Wen, Shi, Liye, Ji, Yu, Hu, Wenxin, Chen, Xi, Zheng, Wei, He, Liang

论文摘要

顺序建议是当前研究中的一个重要主题,该研究使用用户行为序列作为预测未来行为的输入。通过通过DOT产品评估历史行为的相关强度,基于自我注意的机制的模型可以捕获序列的长期偏好。但是,它有两个局限性。一方面,在确定注意力并创建序列表示时,它没有有效地利用项目的本地上下文信息。另一方面,卷积和线性层通常包含冗余信息,这限制了编码序列的能力。在本文中,我们提出了一个基于廉价因果卷积的自我牵键顺序推荐模型。它利用因果卷积来捕获项目的本地信息,以计算注意力和生成序列嵌入。它还使用廉价的卷积来通过轻质结构来改善表示形式。我们根据准确和校准的顺序建议评估了所提出的模型的有效性。基准数据集上的实验表明,所提出的模型可以在单目标建议方案中表现更好。

Sequential Recommendation is a prominent topic in current research, which uses user behavior sequence as an input to predict future behavior. By assessing the correlation strength of historical behavior through the dot product, the model based on the self-attention mechanism can capture the long-term preference of the sequence. However, it has two limitations. On the one hand, it does not effectively utilize the items' local context information when determining the attention and creating the sequence representation. On the other hand, the convolution and linear layers often contain redundant information, which limits the ability to encode sequences. In this paper, we propose a self-attentive sequential recommendation model based on cheap causal convolution. It utilizes causal convolutions to capture items' local information for calculating attention and generating sequence embedding. It also uses cheap convolutions to improve the representations by lightweight structure. We evaluate the effectiveness of the proposed model in terms of both accurate and calibrated sequential recommendation. Experiments on benchmark datasets show that the proposed model can perform better in single- and multi-objective recommendation scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源