论文标题
在远程患者监控网络中使用杜鹃滤波器的安全有效保留隐私身份验证方案
Secure and Efficient Privacy-preserving Authentication Scheme using Cuckoo Filter in Remote Patient Monitoring Network
论文作者
论文摘要
随着智能医疗设备和系统中无处不在的进步,远程患者监测(RPM)网络的潜力正在现代医疗保健系统中发展。医疗专业人员(医生,护士或医学专家)可以获取有关患者的生命力和敏感的生理信息,并提供适当的治疗方法,以通过RPM网络改善生活质量。但是,RPM网络中通信的无线性质使设计有效的安全通信机制变得具有挑战性。近年来,已经提出了许多身份验证方案,以确保RPM网络的安全性。化名,数字签名和身份验证的密钥交换(AKE)协议用于医学事物Internet(IOMT),以开发安全的授权和隐私保护通信。但是,由于在医院云服务器上保持了大量的密钥对或假名结果,因此传统的身份验证协议面临着高架挑战。在这项研究工作中,我们确定了这一研究差距,并提出了一种新型的安全有效的隐私性身份验证方案,该验证方案使用RPM网络的杜鹃过滤器。在我们提出的计划中使用杜鹃过滤器为相互匿名身份验证和医疗专业人员与患者之间的秘密共享关键建立过程提供了一种有效的方法。此外,我们使用基于相关的异常检测模型来确定传感器节点的不端传感器节点,以建立安全的通信。使用SPAN和AVISPA工具的安全分析和正式的安全验证表明,我们提出的计划针对消息修改,重播攻击和中间攻击的稳健性。
With the ubiquitous advancement in smart medical devices and systems, the potential of Remote Patient Monitoring (RPM) network is evolving in modern healthcare systems. The medical professionals (doctors, nurses, or medical experts) can access vitals and sensitive physiological information about the patients and provide proper treatment to improve the quality of life through the RPM network. However, the wireless nature of communication in the RPM network makes it challenging to design an efficient mechanism for secure communication. Many authentication schemes have been proposed in recent years to ensure the security of the RPM network. Pseudonym, digital signature, and Authenticated Key Exchange (AKE) protocols are used for the Internet of Medical Things (IoMT) to develop secure authorization and privacy-preserving communication. However, traditional authentication protocols face overhead challenges due to maintaining a large set of key-pairs or pseudonyms results on the hospital cloud server. In this research work, we identify this research gap and propose a novel secure and efficient privacy-preserving authentication scheme using cuckoo filters for the RPM network. The use of cuckoo filters in our proposed scheme provides an efficient way for mutual anonymous authentication and a secret shared key establishment process between medical professionals and patients. Moreover, we identify the misbehaving sensor nodes using a correlation-based anomaly detection model to establish secure communication. The security analysis and formal security validation using SPAN and AVISPA tools show the robustness of our proposed scheme against message modification attacks, replay attacks, and man-in-the-middle attacks.