论文标题

人类在环上的混合

Human-in-the-Loop Mixup

论文作者

Collins, Katherine M., Bhatt, Umang, Liu, Weiyang, Piratla, Vihari, Sucholutsky, Ilia, Love, Bradley, Weller, Adrian

论文摘要

已经发现对人类的模型表示形式可改善鲁棒性和概括。但是,这种方法通常集中在标准观察数据上。综合数据正在增殖并为机器学习的许多进步提供动力。然而,并不总是清楚合成标签是否在感知上与人类保持一致 - 使其可能不是人类对齐的模型表示。我们专注于混合中使用的合成数据:一种强大的正规化程序,以提高模型鲁棒性,泛化和校准。我们设计了一系列的一系列启发界面,我们以Hill Mixe Suite的形式发布,并招募了159名参与者,以提供感知判断及其不确定性,并在混合示例中提供。我们发现,人类的看法与传统上用于合成点的标签并不始终如一,并开始证明这些发现的适用性,以提高下游模型的可靠性,尤其是在纳入人类不确定性时。我们在我们称为H-MIX的新数据中心中发布了所有判断。

Aligning model representations to humans has been found to improve robustness and generalization. However, such methods often focus on standard observational data. Synthetic data is proliferating and powering many advances in machine learning; yet, it is not always clear whether synthetic labels are perceptually aligned to humans -- rendering it likely model representations are not human aligned. We focus on the synthetic data used in mixup: a powerful regularizer shown to improve model robustness, generalization, and calibration. We design a comprehensive series of elicitation interfaces, which we release as HILL MixE Suite, and recruit 159 participants to provide perceptual judgments along with their uncertainties, over mixup examples. We find that human perceptions do not consistently align with the labels traditionally used for synthetic points, and begin to demonstrate the applicability of these findings to potentially increase the reliability of downstream models, particularly when incorporating human uncertainty. We release all elicited judgments in a new data hub we call H-Mix.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源