论文标题
在图上,同构至$ no^{+}(6,2)$
On a graph isomorphic to $NO^{+}(6,2)$
论文作者
论文摘要
令$ q^{+}(2n-1,2)$为$ pg(2n-1,2)$的非偏度双曲线四边形。令$ no^{+}(2n,2)$是切线图,其顶点是$ pg(2n-1,2)\ setminus q^{+}(2n-1,2)$和两个顶点$ u,〜v $如果行连接到$ u $ u $ u $ u $ u $ u $ u $ u $ u $ u $ u $ u $ u $ us $ q^^$ q^^^^1(2n-v $,则是相邻的。然后$ no^{+}(2n-1,q)$是一个强烈的常规图。令$ \ Mathcal {V}^{4} _ {2} $为$ pg(5,q)$和$ \ MATHCAL {M MATHCAL {M}^{3} _ {4} _ {4} $ it textit {4} $ ITS \ textit {cextit {cecat {cecant varret}中的\ textit {Veronese Surface}。当$ q = 2 $,$ | q^{+}(5,2)| = | \ Mathcal {M}^{3} _ {4} | = 35 $。在本文中,我们定义图形$ n \ MATHCAL {M}^{3} _ {4} $,在$ PG(5,2)\ setMinus \ Mathcal \ Mathcal {M}^{3} {3} _ {4} $中,并带有切线图的模拟率规则。这样的图是同构至$ no^{+}(6,2)$。
Let $Q^{+}(2n-1,2)$ be a non-degenerate hyperbolic quadric of $PG(2n-1,2)$. Let $NO^{+}(2n,2)$ be the tangent graph, whose vertices are the points of $PG(2n-1,2) \setminus Q^{+}(2n-1,2)$ and two vertices $u,~v$ are adjacent if the line joining $u$ and $v$ is tangent to $Q^{+}(2n-1,2)$. Then $NO^{+}(2n-1,q)$ is a strongly regular graph. Let $\mathcal{V}^{4}_{2}$ be the \textit{Veronese surface} in $PG(5,q)$, and $\mathcal{M}^{3}_{4}$ its \textit{secant variety}. When $q=2$, $|Q^{+}(5,2)|=|\mathcal{M}^{3}_{4}|=35$. In this paper we define the graph $N\mathcal{M}^{3}_{4}$, with 28 vertices in $PG(5,2)\setminus\mathcal{M}^{3}_{4}$ and with the analogue incidence rule of the tangent graph. Such graph is isomorphic to $NO^{+}(6,2)$.