论文标题

brooks-type定理,用于$ r $ $ $的图形颜色

Brooks-type theorem for $r$-hued coloring of graphs

论文作者

Jendroľ, Stanislav, Onderko, Alfréd

论文摘要

简单图$ g $的$ r $ - 颜色是其顶点的适当着色,因此每个顶点$ v $至少与至少$ \ min \ {r,°(v)\} $相邻。 $ r $ $ g $的最小颜色数量,$ r $ hued色的数字,用$χ_{r}(g)$表示。在此注释中,我们表明$χ_r(g)\ leq(r -1)(δ(g) + 1) + 2,每个简单的图形$ g $和每个$ r \ geq 2 $ $ $$,在$ r <Δ(g)$的情况下,这会改善目前已知的$δ(g)$ - 基于$δ(g)$ - 基于$χ_r(g)$ + 1(namy)$ + 1(namy)。 我们还讨论了图表的存在,其$ r $ hud的色度数接近$(r-1)(δ + 1) + 2 $,我们证明有一个最高度$δ$的双 - $ r $ hud $ hued choramate nubome nucation $(r-1)δ + 1 $ r \ in \ in \ in \ in \ in \ {2 $ fivity $ r \ dece + + + + +; 2 $;我们认为,$(r-1)δ(g) + 1 $是$ r $ $ $ $ $ g $的最佳上限。

An $r$-hued coloring of a simple graph $G$ is a proper coloring of its vertices such that every vertex $v$ is adjacent to at least $\min\{r, °(v)\}$ differently colored vertices. The minimum number of colors needed for an $r$-hued coloring of a graph $G$, the $r$-hued chromatic number, is denoted by $χ_{r}(G)$. In this note we show that $$χ_r(G) \leq (r - 1)(Δ(G) + 1) + 2,$$ for every simple graph $G$ and every $r \geq 2$, which in the case when $r < Δ(G)$ improves the presently known $Δ(G)$-based upper bound on $χ_r(G)$, namely $r Δ(G) + 1$. We also discuss the existence of graphs whose $r$-hued chromatic number is close to $(r-1)(Δ+ 1 ) + 2$ and we prove that there is a bipartite graph of maximum degree $Δ$ whose $r$-hued chromatic number is $(r-1)Δ+ 1$ for every $r \in \{2, \dots, 9\}$ and infinitely many values of $Δ\geq r + 2$; we believe that $(r-1)Δ(G) + 1$ is the best upper bound on the $r$-hued chromatic number of any bipartite graph $G$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源