论文标题

使用端到端学习的社会机器人的非语言社会行为产生

Nonverbal Social Behavior Generation for Social Robots Using End-to-End Learning

论文作者

Ko, Woo-Ri, Jang, Minsu, Lee, Jaeyeon, Kim, Jaehong

论文摘要

为了提供有效且令人愉悦的人类机器人互动,对于社交机器人来说,表现出非语言行为(例如握手或拥抱)很重要。但是,再现预编码动作的传统方法使用户可以轻松预测机器人的反应,从而给人以一种机器人是机器而不是真实代理的印象。因此,我们提出了一种基于SEQ2SEQ模型的神经网络体系结构,该模型以端到端的方式从人类互动中学习社会行为。我们采用了一个生成的对抗网络,以防止在产生长期行为时发生无效的姿势序列。为了验证所提出的方法,在模拟环境中使用类人形机器人胡椒进行了实验。因为很难确定社会行为产生的成功或失败,所以我们建议新的指标来计算生成的行为与地面行为之间的差异。我们使用这些指标来展示不同的网络体系结构选择如何影响行为的表现,并比较了学习多种行为的表现和学习单一行为的行为。我们希望我们提出的方法不仅可以与家庭服务机器人一起使用,还可以用于指南机器人,交付机器人,教育机器人和虚拟机器人,从而使用户能够享受并有效与机器人互动。

To provide effective and enjoyable human-robot interaction, it is important for social robots to exhibit nonverbal behaviors, such as a handshake or a hug. However, the traditional approach of reproducing pre-coded motions allows users to easily predict the reaction of the robot, giving the impression that the robot is a machine rather than a real agent. Therefore, we propose a neural network architecture based on the Seq2Seq model that learns social behaviors from human-human interactions in an end-to-end manner. We adopted a generative adversarial network to prevent invalid pose sequences from occurring when generating long-term behavior. To verify the proposed method, experiments were performed using the humanoid robot Pepper in a simulated environment. Because it is difficult to determine success or failure in social behavior generation, we propose new metrics to calculate the difference between the generated behavior and the ground-truth behavior. We used these metrics to show how different network architectural choices affect the performance of behavior generation, and we compared the performance of learning multiple behaviors and that of learning a single behavior. We expect that our proposed method can be used not only with home service robots, but also for guide robots, delivery robots, educational robots, and virtual robots, enabling the users to enjoy and effectively interact with the robots.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源