论文标题
LightVessel:通过相似性知识蒸馏探索轻质冠状动脉船分割
LightVessel: Exploring Lightweight Coronary Artery Vessel Segmentation via Similarity Knowledge Distillation
论文作者
论文摘要
近年来,深度卷积神经网络(DCNN)在冠状动脉血管分割方面取得了巨大的前景。但是,由于高性能方法具有过多的参数和高计算成本,因此很难在临床情况下部署复杂的模型。为了解决这个问题,我们提出了\ textbf {LightVessel},这是一个相似的知识蒸馏框架,用于轻质的冠状动脉血管分割。首先,我们提出了一个针对语义迁移建模的特征相似性蒸馏(FSD)模块。具体而言,我们计算来自编码器和解码器的对称层之间的特征相似性。然后将相似性从繁琐的教师网络转移到非训练的轻量级学生网络。同时,为了鼓励学生模型了解更多像素语义信息,我们介绍了对抗性相似性蒸馏(ASD)模块。具体而言,ASD模块旨在分别构建教师和学生模型的注释和预测之间的空间对抗相关性。通过ASD模块,学生模型获得了冠状动脉血管的细分细分边缘分段结果。对临床冠状动脉血管数据集进行的广泛实验表明,LightVessel的表现优于各种知识蒸馏。
In recent years, deep convolution neural networks (DCNNs) have achieved great prospects in coronary artery vessel segmentation. However, it is difficult to deploy complicated models in clinical scenarios since high-performance approaches have excessive parameters and high computation costs. To tackle this problem, we propose \textbf{LightVessel}, a Similarity Knowledge Distillation Framework, for lightweight coronary artery vessel segmentation. Primarily, we propose a Feature-wise Similarity Distillation (FSD) module for semantic-shift modeling. Specifically, we calculate the feature similarity between the symmetric layers from the encoder and decoder. Then the similarity is transferred as knowledge from a cumbersome teacher network to a non-trained lightweight student network. Meanwhile, for encouraging the student model to learn more pixel-wise semantic information, we introduce the Adversarial Similarity Distillation (ASD) module. Concretely, the ASD module aims to construct the spatial adversarial correlation between the annotation and prediction from the teacher and student models, respectively. Through the ASD module, the student model obtains fined-grained subtle edge segmented results of the coronary artery vessel. Extensive experiments conducted on Clinical Coronary Artery Vessel Dataset demonstrate that LightVessel outperforms various knowledge distillation counterparts.