论文标题
哺乳动物卵母细胞中染色体之间的远程排斥
Long-Range Repulsion Between Chromosomes in Mammalian Oocyte Spindles
论文作者
论文摘要
在真核细胞分裂期间,一种基于微管的结构,称为纺锤体对染色体施加力,从而组织和隔离它们的广泛工作表明,与纺锤体轴相似的力,包括负责分离姐妹染色体的人,是由微管聚合物化和去染色体化和去脱生的,以及分离的染色体。相比之下,对垂直于纺锤体轴的作用的力知之甚少,这决定了中期板上染色体的构型,从而影响核定位和隔离误差的速率。在这里,我们使用定量活细胞显微镜表明,中期染色体在小鼠卵母细胞纺锤体中是空间抗相关的,表明迄今为止存在垂直于纺锤体轴的远距离远程。我们首先证明了纺锤体的微管网络作为列液晶,然后争辩说,嵌入式染色体周围的列场变形会引起它们之间的长距离排斥,从而解释了这一观察结果。我们的工作突出了材料物理学在理解细胞结构的结构,动力学和力学方面的惊人相关性,并在大型纺锤体中提出了一种新颖的染色体组织的新型且潜在的通用模式。
During eukaryotic cell division, a microtubule-based structure called the spindle exerts forces on chromosomes, thereby organizing and segregating them Extensive work demonstrates that the forces acting parallel to the spindle axis, including those responsible for separating sister chromatids, are generated by microtubule polymerization and depolymerization, and molecular-motors. In contrast, little is known about the forces acting perpendicular to the spindle axis, which determine the configuration of chromosomes at the metaphase plate, and thus impact nuclear localization and rates of segregation errors. Here, we use quantitative live-cell microscopy to show that metaphase chromosomes are spatially anti-correlated in mouse oocyte spindles, indicating the existence of hitherto unknown long-range forces acting perpendicular to the spindle axis. We explain this observation by first demonstrating that the spindle's microtubule network behaves as a nematic liquid crystal, and then arguing that deformation of the nematic field around embedded chromosomes causes long-range repulsion between them. Our work highlights the surprising relevance of materials physics in understanding the structure, dynamics, and mechanics of cellular structures, and presents a novel and potentially generic mode of chromosome organization in large spindles.