论文标题
压力诱导的二聚化和分子轨道形成在Na2RUO3中具有强相关增强的自旋轨道耦合效果
Pressure-induced dimerization and molecular orbitals formation in Na2RuO3 with strong correlation-enhanced spin-orbit coupling effect
论文作者
论文摘要
进行第一原理计算和模拟是为了阐明具有4D^4电子构型的蜂窝晶格化合物Na2RuO3的非磁性绝缘态,并探索压力下晶体结构和电子特性的发展。我们揭示了个体的库仑相关或自旋轨道耦合(SOC)无法再现na2ruo3的实验观察到的非磁性绝缘行为,而库仑相关性增强了SOC相互作用,从而增加了与不寻常的旋转旋转状态的j = 0非磁性绝缘状态,并与之相反的是固定的固定量,并与之相反。启发。此外,已经预测了15-17.5 GPA的压力诱导的结构二聚化跃迁。高压二聚相特征的蜂窝晶格具有沿晶体学B方向对齐的短ru-ru二聚体的平行模式。伴随着结构二聚化,电子结构通过形成分子轨道显示出惊人的重建。有趣的是,库仑相关与SOC的合作可以在高压二聚阶段实现非磁性绝缘状态。由于晶格的自由度,电子相关性和SOC相互作用的微妙相互作用,带有蜂窝晶格的D^4 ruthenate Na2RuO3将提供一个新的平台,以探索异常物理和丰富的相图。
First-principles calculations and simulations are conducted to clarify the nonmagnetic insulating ground state of the honeycomb lattice compound Na2RuO3 with 4d^4 electronic configuration and explore the evolutions of crystal structure and electronic property under pressure. We reveal that individual Coulomb correlation or spin-orbit coupling (SOC) effect cannot reproduce the experimentally observed nonmagnetic insulating behavior of Na2RuO3, whereas the Coulomb correlation enhanced SOC interactions give rise to an unusual spin-orbital-entangled J = 0 nonmagnetic insulating state, which contrasts with the SOC assisted Mott insulating state in d^5 ruthenates and iridates. Furthermore, a pressure-induced structural dimerization transition has been predicted around 15-17.5 GPa. The honeycomb lattice of the high-pressure dimerized phase features with parallel pattern of the short Ru-Ru dimers aligning along the crystallographic b direction. Accompanied with the structural dimerization, the electronic structure shows striking reconstruction by formation of molecular orbitals. Interestingly, the cooperation of Coulomb correlation together with SOC can realize a nonmagnetic insulating state in the high-pressure dimerized phase. The d^4 ruthenate Na2RuO3 with honeycomb lattice will provide a new platform to explore unusual physics and rich phase diagram due to the delicate interplay of lattice degree of freedom, electron correlations, and SOC interactions.