论文标题
$(n-1)$ - 连接$ 2N $ - manifolds的惯性组
Inertia groups of $(n-1)$-connected $2n$-manifolds
论文作者
论文摘要
在本文中,我们计算了$(N-1)$连接的惯性组,平稳,封闭,定向$ 2N $ -Manifolds,其中$ n \ geq 3 $。结果,我们完成了这种流形的差异分类,完成了六十年前沃尔发起的计划,除了克尔瓦尔不变的一个问题的$ 126 $维度案例外。 特别是,我们发现惯性集团总是以$ n \ neq 4,8,9 $的质量消失 - $ n \ gg 0 $,这是由以前的几位作者(包括Wall,Stolz和Burklund and Burklund and Hahn)和第一位命名作者所知道的。当$ n = 4,8,9 $时,我们应用了克雷克(Kreck)的改良手术和纳吉(Nagy)证明的克劳利(Crowley)的$ q $ form猜想的特殊情况,以计算这些歧管的惯性组。在$ n = 4,8 $的情况下,我们的结果收回了克劳利(Nagy)和克劳利(Crowley)的未发表的作品 - olbermann。 相比之下,我们表明,$(n-1)$的同质和一致性惯性组,连接,平滑,封闭,定向$ 2N $ -Manifolds,$ n \ geq 3 $总是消失。
In this paper, we compute the inertia groups of $(n-1)$-connected, smooth, closed, oriented $2n$-manifolds where $n \geq 3$. As a consequence, we complete the diffeomorphism classification of such manifolds, finishing a program initiated by Wall sixty years ago, with the exception of the $126$-dimensional case of the Kervaire invariant one problem. In particular, we find that the inertia group always vanishes for $n \neq 4,8,9$ -- for $n \gg 0$, this was known by the work of several previous authors, including Wall, Stolz, and Burklund and Hahn with the first named author. When $n = 4,8,9$, we apply Kreck's modified surgery and a special case of Crowley's $Q$-form conjecture, proven by Nagy, to compute the inertia groups of these manifolds. In the cases $n=4,8$, our results recover unpublished work of Crowley--Nagy and Crowley--Olbermann. In contrast, we show that the homotopy and concordance inertia groups of $(n-1)$-connected, smooth, closed, oriented $2n$-manifolds with $n \geq 3$ always vanish.