论文标题

量子伪enentangrempt

Quantum Pseudoentanglement

论文作者

Aaronson, Scott, Bouland, Adam, Fefferman, Bill, Ghosh, Soumik, Vazirani, Umesh, Zhang, Chenyi, Zhou, Zixin

论文摘要

纠缠是一种量子资源,在某些方面类似于经典计算中的随机性。受Gheorghiu和Hoban的最新作品的启发,我们定义了“假entangrement”的概念,该属性是由有效构造的量子状态的集合所展示的,这些属性与具有最大纠缠的量子状态是没有区别的。 (最大的纠缠)haar random状态。与以前的该手稿(Arxiv:2211.00747V1)相比,此版本引入了新的伪随状态构建,具有更简单的正确性证明,并且在所有剪切中同时进行了低纠缠的技术更强的结果。

Entanglement is a quantum resource, in some ways analogous to randomness in classical computation. Inspired by recent work of Gheorghiu and Hoban, we define the notion of "pseudoentanglement'', a property exhibited by ensembles of efficiently constructible quantum states which are indistinguishable from quantum states with maximal entanglement. Our construction relies on the notion of quantum pseudorandom states -- first defined by Ji, Liu and Song -- which are efficiently constructible states indistinguishable from (maximally entangled) Haar-random states. Specifically, we give a construction of pseudoentangled states with entanglement entropy arbitrarily close to $\log n$ across every cut, a tight bound providing an exponential separation between computational vs information theoretic quantum pseudorandomness. We discuss applications of this result to Matrix Product State testing, entanglement distillation, and the complexity of the AdS/CFT correspondence. As compared with a previous version of this manuscript (arXiv:2211.00747v1) this version introduces a new pseudorandom state construction, has a simpler proof of correctness, and achieves a technically stronger result of low entanglement across all cuts simultaneously.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源