论文标题

通过贝叶斯神经网络为近海风结构的农场范围的虚拟负载监控

Farm-wide virtual load monitoring for offshore wind structures via Bayesian neural networks

论文作者

Hlaing, N., Morato, Pablo G., Santos, F. d. N., Weijtjens, W., Devriendt, C., Rigo, P.

论文摘要

近海风结构在整个运营寿命中都会受到恶化机制的影响。即使可以通过基于物理的恶化模型来估算结构元素的恶化演变,该过程中涉及的不确定性也可以选择生命周期管理决策的选择。在这种情况下,通过有效的监视系统收集相关信息可以减少不确定性,最终推动更佳的生命周期决策。但是,由于实用和经济的限制,在农场所有风力涡轮机上实施的完整监测仪器可能变得不可行。此外,经过几年的海洋环境暴露,某些负载监测系统通常会变得有缺陷。在解决上述问题时,由舰队领袖风力涡轮机执导的农业范围内的虚拟负载监控方案提供了一种有吸引力的解决方案。可以从完全启发的风力涡轮机中获取的数据获取,然后可以训练然后部署模型,从而产生非受到监控的风力涡轮机的负载预测,仅标准数据仍然可用。在本文中,我们提出了通过贝叶斯神经网络(BNN)制定的虚拟负载监视框架,并提供相关的实现详细信息,以构建,培训和部署基于BNN数据的虚拟监控模型。与其确定性的对应物相反,BNN固有地宣布了与生成的负载预测相关的不确定性,并允许检测到针对非受到监控的风力涡轮机产生的不准确的负载估计。提出的虚拟负载监视通过在运营海上风电场的实验活动中进行了彻底的测试,结果证明了BNN模型对基于车队领导者的农业范围的虚拟监控的有效性。

Offshore wind structures are subject to deterioration mechanisms throughout their operational lifetime. Even if the deterioration evolution of structural elements can be estimated through physics-based deterioration models, the uncertainties involved in the process hurdle the selection of lifecycle management decisions. In this scenario, the collection of relevant information through an efficient monitoring system enables the reduction of uncertainties, ultimately driving more optimal lifecycle decisions. However, a full monitoring instrumentation implemented on all wind turbines in a farm might become unfeasible due to practical and economical constraints. Besides, certain load monitoring systems often become defective after a few years of marine environment exposure. Addressing the aforementioned concerns, a farm-wide virtual load monitoring scheme directed by a fleet-leader wind turbine offers an attractive solution. Fetched with data retrieved from a fully-instrumented wind turbine, a model can be trained and then deployed, thus yielding load predictions of non-fully monitored wind turbines, from which only standard data remains available. In this paper, we propose a virtual load monitoring framework formulated via Bayesian neural networks (BNNs) and we provide relevant implementation details needed for the construction, training, and deployment of BNN data-based virtual monitoring models. As opposed to their deterministic counterparts, BNNs intrinsically announce the uncertainties associated with generated load predictions and allow to detect inaccurate load estimations generated for non-fully monitored wind turbines. The proposed virtual load monitoring is thoroughly tested through an experimental campaign in an operational offshore wind farm and the results demonstrate the effectiveness of BNN models for fleet-leader-based farm-wide virtual monitoring.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源