论文标题

列表方形着色的猜想失败了两分的平面图及其线图

The List Square Coloring Conjecture fails for bipartite planar graphs and their line graphs

论文作者

Hasanvand, Morteza

论文摘要

Kostochka and Woodall(2001)猜想每个图的平方都具有相同的色数和列表色编号。在2015年,金和公园对非双方和两部分图的这种猜想反驳了。几位作者询问该猜想是否适用于具有小度,无爪图或线图的两部分图。在本文中,我们向这个猜想介绍了几种反例,以解决Kim and Park〜(2015),Kim,Kwon和Park〜(2015)以及Dai,Wang,Yang和Yu〜(2018)提出的三个开放问题。特别是,我们反驳了Havet,Heuvel,McDiarmid和Reed(2017)提出的这个猜想的平面版本。 该猜想最初是为了使列表的总体着色猜想更强的版本。为了制作修订版,要决定这种猜想是否存在于两分的图形$ g $,通过对正方形图的变色数($ g^2 $)的最大程度表示,因为条件$χ(g^2)\ ge \ ge \ ge \ ge \ frac {1} {1} {2} {2} {g^2}δ(g^2)+1 $ 1 $(或添加umpers of ins of affere)为了支持此版本,我们将证明即使任意增加下限也无法删除两分的条件。 最后,我们研究了两分或平面图中具有界限最大程度的非选择图。因此,由于Erd \ H OS,Rubin和Taylor〜(1980),Bessy,Havet和Palaysi(2002),Voigt(1993),Mirzakhani(1996)和Glebov,Glebov,Kostochka和Tashkinkinov(2005)(2005年),我们改善了几种图形结构。此外,我们表征了边缘最小的$ 3 $ -CHROMATIC非$ 3 $ -Choosable(resp。$ 4 $ -CHROMATIC NON-$ 4 $ - choosable)订单图,最多为$ 9 $($ 11 $),并解决了Nelsen〜(2019年)提出的问题。

Kostochka and Woodall (2001) conjectured that the square of every graph has the same chromatic number and list chromatic number. In 2015 Kim and Park disproved this conjecture for non-bipartite and bipartite graphs. It was asked by several authors whether this conjecture holds for bipartite graphs with small degrees, claw-free graphs, or line graphs. In this paper, we introduce several kinds of counterexamples to this conjecture to solve three open problems posed by Kim and Park~(2015), Kim, Kwon, and Park~(2015), and Dai, Wang, Yang, and Yu~(2018). In particular, we disprove a planar version of this conjecture proposed by Havet, Heuvel, McDiarmid, and Reed (2017). This conjecture was originally proposed to make a stronger version of the List Total Coloring Conjecture. In order to make a revised version, it remains to decide whether this conjecture holds for bipartite graphs $G$ by imposing a lower bound on the chromatic number of the square graph $G^2$ in terms of its maximum degree as the condition $χ(G^2) \ge \frac{1}{2} Δ(G^2)+1$ (or by adding an upper bound on the number of colors used in lists for a weaker version). To support this version, we will show that the bipartite condition cannot be dropped even by increasing the lower bound arbitrarily. Finally, we investigate non-choosable graphs with bounded maximum degree in bipartite or planar graphs. Consequently, we improve several graph constructions due to Erd\H os, Rubin, and Taylor~(1980), Bessy, Havet, and Palaysi (2002), Voigt (1993), Mirzakhani (1996), and Glebov, Kostochka, and Tashkinov (2005) in terms of maximum degree or order. In addition, we characterize edge-minimal $3$-chromatic non-$3$-choosable (resp. $4$-chromatic non-$4$-choosable) graphs of order at most $9$ (resp. $11$) and settle a question posed by Nelsen~(2019).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源