论文标题
自然语言扣除,信息不完整
Natural Language Deduction with Incomplete Information
论文作者
论文摘要
越来越多的工作研究如何通过产生自然语言“证明”来回答问题或验证主张:一系列演绎推断,根据一组前提产生答案。但是,这些方法只有在给出的证据遵循时才能进行良好的推论。我们提出了一个新系统,该系统可以处理未指定的设置,其中并非所有场所在一开始都列出;也就是说,需要实现其他假设以证明索赔。通过使用自然语言生成模型绑架了一个前提和结论,我们可以将结论所需的缺失证据归为真实。我们的系统以双向方式在两个边缘进行搜索,并交织了演绎(前向)和绑架(向后链)的生成步骤。我们为每个步骤采样多个可能的输出,以实现搜索空间的覆盖范围,同时通过通过往返验证过程过滤低质量的世代来确保正确性。在IntailmentBank数据集的修改版本和一个称为日常规范的新数据集上的结果:为什么不呢?证明具有验证的绑架生成可以在内部和室外设置中恢复前提。
A growing body of work studies how to answer a question or verify a claim by generating a natural language "proof": a chain of deductive inferences yielding the answer based on a set of premises. However, these methods can only make sound deductions when they follow from evidence that is given. We propose a new system that can handle the underspecified setting where not all premises are stated at the outset; that is, additional assumptions need to be materialized to prove a claim. By using a natural language generation model to abductively infer a premise given another premise and a conclusion, we can impute missing pieces of evidence needed for the conclusion to be true. Our system searches over two fringes in a bidirectional fashion, interleaving deductive (forward-chaining) and abductive (backward-chaining) generation steps. We sample multiple possible outputs for each step to achieve coverage of the search space, at the same time ensuring correctness by filtering low-quality generations with a round-trip validation procedure. Results on a modified version of the EntailmentBank dataset and a new dataset called Everyday Norms: Why Not? show that abductive generation with validation can recover premises across in- and out-of-domain settings.