论文标题
UNFIS:一种新型的神经模糊推理系统,具有非结构化模糊规则的分类规则
UNFIS: A Novel Neuro-Fuzzy Inference System with Unstructured Fuzzy Rules for Classification
论文作者
论文摘要
模糊推理系统(FIS)的重要限制是根据评估所有输入变量定义的结构化规则。实际上,所有模糊规则的长度和输入变量的数量相等。但是,在许多决策问题中,评估一组有限的输入变量的某些条件足以正确决定(非结构化规则)。因此,这种限制限制了FIS的性能,概括和解释性。为了解决此问题,本文提出了一个用于分类应用程序的神经模糊推理系统,可以选择用于构建每个模糊规则的不同输入变量集。为了实现此功能,提出了一个具有自适应参数的新模糊选择器神经元,可以在每个模糊规则的前提部分中选择输入变量。此外,在本文中,也正确更改了高吉诺 - 康的随之而来的部分,以仅考虑选定的输入变量集。为了了解所提出的体系结构的参数,提出了一种基于信任区域的学习方法(General Quasi-Levenberg-Marquardt(GQLM)),以最大程度地减少多类问题中的跨肠道。将提出方法的性能与某些现实世界分类问题中的一些相关方法进行了比较。基于这些比较,所提出的方法具有更好或非常紧密的性能,而既定的结构则由非结构化的模糊组成。
An important constraint of Fuzzy Inference Systems (FIS) is their structured rules defined based on evaluating all input variables. Indeed, the length of all fuzzy rules and the number of input variables are equal. However, in many decision-making problems evaluating some conditions on a limited set of input variables is sufficient to decide properly (unstructured rules). Therefore, this constraint limits the performance, generalization, and interpretability of the FIS. To address this issue, this paper presents a neuro-fuzzy inference system for classification applications that can select different sets of input variables for constructing each fuzzy rule. To realize this capability, a new fuzzy selector neuron with an adaptive parameter is proposed that can select input variables in the antecedent part of each fuzzy rule. Moreover, in this paper, the consequent part of the Takagi-Sugeno-Kang FIS is also changed properly to consider only the selected set of input variables. To learn the parameters of the proposed architecture, a trust-region-based learning method (General quasi-Levenberg-Marquardt (GqLM)) is proposed to minimize cross-entropy in multiclass problems. The performance of the proposed method is compared with some related previous approaches in some real-world classification problems. Based on these comparisons the proposed method has better or very close performance with a parsimonious structure consisting of unstructured fuzzy.