论文标题

机器学习中基于逻辑的解释性

Logic-Based Explainability in Machine Learning

论文作者

Marques-Silva, Joao

论文摘要

过去十年中,机器学习(ML)的成功流了不断增长。这些成功提供了明确的证据,表明ML必然会在广泛的实际用途中普遍存在,包括许多直接影响人类的人。不幸的是,对于人类决策者来说,最成功的ML模型的运行是无法理解的。结果,使用ML模型,尤其是在高风险和安全至关重要的环境中的使用并非没有关注。近年来,已经为设计ML模型的方法做了努力。这些努力中的大多数都集中在所谓的模型不足的方法上。但是,所有模型不合时宜的方法和相关方法都不能保证严格,因此被称为非正式。例如,这种非正式解释可以与不同的预测一致,这在实践中使它们无用。本文概述了对计算ML模型基于严格模型的说明的持续研究工作;这些被称为正式解释。这些努力包括各种主题,包括解释的实际定义,计算说明复杂性的表征,目前最好的逻辑编码,用于推理不同的ML模型,以及如何对人类决策者进行解释的解释等。

The last decade witnessed an ever-increasing stream of successes in Machine Learning (ML). These successes offer clear evidence that ML is bound to become pervasive in a wide range of practical uses, including many that directly affect humans. Unfortunately, the operation of the most successful ML models is incomprehensible for human decision makers. As a result, the use of ML models, especially in high-risk and safety-critical settings is not without concern. In recent years, there have been efforts on devising approaches for explaining ML models. Most of these efforts have focused on so-called model-agnostic approaches. However, all model-agnostic and related approaches offer no guarantees of rigor, hence being referred to as non-formal. For example, such non-formal explanations can be consistent with different predictions, which renders them useless in practice. This paper overviews the ongoing research efforts on computing rigorous model-based explanations of ML models; these being referred to as formal explanations. These efforts encompass a variety of topics, that include the actual definitions of explanations, the characterization of the complexity of computing explanations, the currently best logical encodings for reasoning about different ML models, and also how to make explanations interpretable for human decision makers, among others.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源