论文标题
h(n) - 移动是虚拟和焊接链接的打结操作
The H(n)-move is an unknotting operation for virtual and welded links
论文作者
论文摘要
伸出的操作是局部移动,因此可以通过这些操作的有限序列以及一些雷迪德式移动将任何结图转换为微不足道结的图。众所周知,对于所有$ n \ geq 2 $ the $ h(n)$ - 移动是经典结和链接的无结操作。在本文中,我们扩展了经典的解开操作$ h(n)$ - 移至虚拟结和链接。虚拟化和禁止举动是虚拟结和链接的众所周知的无结操作。我们还表明,虚拟化和禁止移动可以通过一系列有限的通用雷迪德移动和$ h(n)$移动来实现。
An unknotting operation is a local move such that any knot diagram can be transformed into a diagram of the trivial knot by a finite sequence of these operations plus some Reidemeister moves. It is known that for all $n \geq 2$ the $H(n)$-move is an unknotting operation for classical knots and links. In this paper, we extend the classical unknotting operation $H(n)$-move to virtual knots and links. Virtualization and forbidden move are well-known unknotting operations for virtual knots and links. We also show that virtualization and forbidden move can be realized by a finite sequence of generalized Reidemeister moves and $H(n)$-moves.