论文标题
16度
Diophantine equation of degree sixteen
论文作者
论文摘要
尽管没有太多的出版物,但大约16个说话方程式,我们确实具有Ramanujan(参考文献#1)给出的身份。即使有16度的数值解决方案,例如16。 (16-7-24)等式(参考#5)几乎没有任何参数解决方案。 Choudhry&Zagar(参考文献2)提出了八八个学位参数化。作者给出了方程式(a^4-b^4)(c^4-d^4)(e^8-f^8)=(u^4-v^4)(w^4-x^4)(y^8-z^8)的参数解决方案。我们还提供了数值解决方案,但是由于方程的高度(十六个),我们只能在超过五位数字以上的变量获得最小整数值。我们还赋予了一些与第四和八学位有关的新身份。
While there is not much publications, about degree sixteen Diophantine equation we do have an identity given by Ramanujan (ref. #1). Also on the internet even though there are numerical solutions to degree sixteen for eg. (16-7-24) equation (ref. #5) there are hardly any parametric solutions. An Octic degree parameterization has been arrived at by Choudhry & Zagar (ref. 2). The authors have given a parametric solution to the equation (a^4-b^4)(c^4-d^4)(e^8-f^8)=(u^4-v^4)(w^4-x^4)(y^8-z^8). We have also given numerical solution but because of the high degree (sixteen) of the equation we only get a minimum integer value for the variables at more than five digits. We have also given some new identities related to degree four & eight.