论文标题

$ x_1^2+x_2^2-x_3^2 = n^2 $的解决方案with small $ x_3 $

Solutions of $x_1^2+x_2^2-x_3^2=n^2$ with small $x_3$

论文作者

Baier, Stephan

论文摘要

Friedlander和Iwaniec调查的集成解决方案$(x_1,x_2,x_3)$他们获得了$ x_3 \ asymp m $的解决方案的渐近公式,其中$ m $远小于$ \ sqrt {d} $。确切地说,它们的状况为$ M \ ge d^{1/2-1/1332} $。他们的分析使他们达到了某些Weyl总和的平均值。 $ d $的条件无平方,对他们的工作至关重要。当$ d = n^2 $是奇数$ n $的平方时,我们调查了“相反”情况。这种情况本质上是不同的,导致了Kloosterman总和。我们获得了$ x_3 \ asymp m $的解决方案的渐近公式,其中$ m \ ge d^{1/2-1/16+\ varepsilon} $用于任何固定的$ \ varepsilon> 0 $。

Friedlander and Iwaniec investigated integral solutions $(x_1,x_2,x_3)$ of the equation $x_1^2+x_2^2-x_3^2=D$, where $D$ is square-free and satisfies the congruence condition $D\equiv 5\bmod{8}$. They obtained an asymptotic formula for solutions with $x_3\asymp M$, where $M$ is much smaller than $\sqrt{D}$. To be precise, their condition is $M\ge D^{1/2-1/1332}$. Their analysis led them to averages of certain Weyl sums. The condition of $D$ being square-free is essential in their work. We investigate the "opposite" case when $D=n^2$ is a square of an odd integer $n$. This case is different in nature and leads to sums of Kloosterman sums. We obtain an asymptotic formula for solutions with $x_3\asymp M$, where $M\ge D^{1/2-1/16+\varepsilon}$ for any fixed $\varepsilon>0$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源