论文标题

行为意图预测驾驶场景:调查

Behavioral Intention Prediction in Driving Scenes: A Survey

论文作者

Fang, Jianwu, Wang, Fan, Xue, Jianru, Chua, Tat-seng

论文摘要

在驾驶现场,公路代理通常会进行频繁的互动和对周围环境的意图理解。自我代理(每个道路代理本身)一直在其他时间预测其他道路使用者将参与什么行为,并期望对安全运动有共同且一致的理解。行为意图预测(BIP)模拟了这种人类的考虑过程,并实现了特定行为的早期预测。类似于其他预测任务,例如轨迹预测,数据驱动的深度学习方法已在研究中采用了主要管道。 BIP的快速发展不可避免地会带来新的问题和挑战。为了促进未来的研究,这项工作提供了对可用数据集,关键因素和挑战,以行人为中心和以车辆为中心的BIP方法以及Bip Aware Applions的BIP的全面审查。根据调查,数据驱动的深度学习方法已成为主要管道。在大多数当前数据集和方法中,行为意图类型仍然是单调的(例如,越过(C),而不是该领域的行人和车道更换车道(LC)的交叉(NC)。此外,对于安全关键的情况(例如,近乎崩溃的情况),当前的研究是有限的。通过这项调查,我们确定了行为意图预测中的开放问题,并提出了可能的未来研究的见解。

In the driving scene, the road agents usually conduct frequent interactions and intention understanding of the surroundings. Ego-agent (each road agent itself) predicts what behavior will be engaged by other road users all the time and expects a shared and consistent understanding for safe movement. Behavioral Intention Prediction (BIP) simulates such a human consideration process and fulfills the early prediction of specific behaviors. Similar to other prediction tasks, such as trajectory prediction, data-driven deep learning methods have taken the primary pipeline in research. The rapid development of BIP inevitably leads to new issues and challenges. To catalyze future research, this work provides a comprehensive review of BIP from the available datasets, key factors and challenges, pedestrian-centric and vehicle-centric BIP approaches, and BIP-aware applications. Based on the investigation, data-driven deep learning approaches have become the primary pipelines. The behavioral intention types are still monotonous in most current datasets and methods (e.g., Crossing (C) and Not Crossing (NC) for pedestrians and Lane Changing (LC) for vehicles) in this field. In addition, for the safe-critical scenarios (e.g., near-crashing situations), current research is limited. Through this investigation, we identify open issues in behavioral intention prediction and suggest possible insights for future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源