论文标题

合奏学习的可区分模型选择

Differentiable Model Selection for Ensemble Learning

论文作者

Kotary, James, Di Vito, Vincenzo, Fioretto, Ferdinando

论文摘要

模型选择是一种旨在创建准确和健壮的模型的策略。设计这些算法的关键挑战是确定用于对任何特定输入样本进行分类的最佳模型。本文解决了这一挑战,并提出了一个新颖的框架,用于将机器学习和组合优化整合的可区分模型选择。该框架是针对合奏学习量身定制的,这是一种结合了单独预训练的模型的输出的策略,并通过将合奏学习任务转换为合奏学习模型中训练有素的端到端,学习为特定输入样本选择合适的合奏成员。在各种任务上进行了测试,提出的框架展示了其多功能性和有效性,在各种设置和学习任务上都优于常规和高级共识规则。

Model selection is a strategy aimed at creating accurate and robust models. A key challenge in designing these algorithms is identifying the optimal model for classifying any particular input sample. This paper addresses this challenge and proposes a novel framework for differentiable model selection integrating machine learning and combinatorial optimization. The framework is tailored for ensemble learning, a strategy that combines the outputs of individually pre-trained models, and learns to select appropriate ensemble members for a particular input sample by transforming the ensemble learning task into a differentiable selection program trained end-to-end within the ensemble learning model. Tested on various tasks, the proposed framework demonstrates its versatility and effectiveness, outperforming conventional and advanced consensus rules across a variety of settings and learning tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源