论文标题

有限温度张量网络网络算法,用于沮丧的二维量子材料

Finite temperature tensor network algorithm for frustrated two-dimensional quantum materials

论文作者

Schmoll, Philipp, Balz, Christian, Lake, Bella, Eisert, Jens, Kshetrimayum, Augustine

论文摘要

针对自然量子系统的更现实的经典描述,我们提出了一种二维张量网络算法,以研究沮丧的模型量子系统和实际量子材料的有限温度特性。为此,我们介绍了无限投影的纠缠单纯式操作员Ansatz来研究热力学特性。为了获得最新的基准测试结果,我们探索了Kagome晶格上高度挑战性的Spin-1/2 Heisenberg抗铁磁铁,该系统为此我们研究了有限磁场和温度下磁化磁化强度的熔化。与实际量子材料的实际实验数据密切相关,我们继续研究Ca $ _ {10} $ CR $ _7 $ o $ o $ _ {28} $的有限温度属性。我们与经典模拟数据在有限温度下存在外部磁场的情况下比较了该材料的磁化曲线。作为第一个理论工具,在该材料的研究中既包含热波动又结合量子相关性,我们的工作有助于解决实验数据与以前的磁化过程理论工作之间的现有争议。

Aimed at a more realistic classical description of natural quantum systems, we present a two-dimensional tensor network algorithm to study finite temperature properties of frustrated model quantum systems and real quantum materials. For this purpose, we introduce the infinite projected entangled simplex operator ansatz to study thermodynamic properties. To obtain state-of-the-art benchmarking results, we explore the highly challenging spin-1/2 Heisenberg anti-ferromagnet on the Kagome lattice, a system for which we investigate the melting of the magnetization plateaus at finite magnetic field and temperature. Making close connection to actual experimental data of real quantum materials, we go on to studying the finite temperature properties of Ca$_{10}$Cr$_7$O$_{28}$. We compare the magnetization curve of this material in the presence of an external magnetic field at finite temperature with classically simulated data. As a first theoretical tool that incorporates both thermal fluctuations as well as quantum correlations in the study of this material, our work contributes to settling the existing controversy between the experimental data and previous theoretical works on the magnetization process.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源