论文标题

鼠尾草:最佳重排的显着性引导混合

SAGE: Saliency-Guided Mixup with Optimal Rearrangements

论文作者

Ma, Avery, Dvornik, Nikita, Zhang, Ran, Pishdad, Leila, Derpanis, Konstantinos G., Fazly, Afsaneh

论文摘要

数据增强是通过减少过度拟合和改善概括来培训准确模型的关键要素。对于图像分类,最受欢迎的数据增强技术从简单的光度和几何转换到更复杂的方法,这些方法使用视觉显着性来制作新的训练示例。随着增强方法变得越来越复杂,它们提高测试准确性的能力会提高,但是,正如我们在本文中所示,这种方法变得繁琐,效率低下且导致较差的外域概括。这激发了一种新的增强技术,该技术可以在简单,高效(即最小计算开销)和可推广的同时获得高精度的提高。为此,我们通过最佳的重排(SAGE)引入了显着性指导的混音,该混音通过使用视觉显着性作为指导来重新排列和混合图像对来创建新的训练示例。通过明确利用显着性,Sage促进了歧视性的前景对象,并产生有用的新图像。我们在CIFAR-10和CIFAR-100上演示了Sage在更有效的同时,与最有效的状态相比,SAGE的表现更好或可比性。此外,在分布式设置中的评估以及对迷你象征的少数学习表明,Sage在不交流稳定性的情况下实现了改善的概括性能。

Data augmentation is a key element for training accurate models by reducing overfitting and improving generalization. For image classification, the most popular data augmentation techniques range from simple photometric and geometrical transformations, to more complex methods that use visual saliency to craft new training examples. As augmentation methods get more complex, their ability to increase the test accuracy improves, yet, such methods become cumbersome, inefficient and lead to poor out-of-domain generalization, as we show in this paper. This motivates a new augmentation technique that allows for high accuracy gains while being simple, efficient (i.e., minimal computation overhead) and generalizable. To this end, we introduce Saliency-Guided Mixup with Optimal Rearrangements (SAGE), which creates new training examples by rearranging and mixing image pairs using visual saliency as guidance. By explicitly leveraging saliency, SAGE promotes discriminative foreground objects and produces informative new images useful for training. We demonstrate on CIFAR-10 and CIFAR-100 that SAGE achieves better or comparable performance to the state of the art while being more efficient. Additionally, evaluations in the out-of-distribution setting, and few-shot learning on mini-ImageNet, show that SAGE achieves improved generalization performance without trading off robustness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源