论文标题
多项式电势中的Q球
Q-balls in polynomial potentials
论文作者
论文摘要
携带保守费用的玻色子可以形成稳定的绑定状态,如果其拉格朗日含有有吸引力的自身互动。具有大型电荷$ Q $的结合状态配置可以经典地描述,并表示为Q-balls,其属性用非线性微分方程编码。在这里,我们在数值和各种分析近似值上研究任意多项式单量表势的Q球。我们强调了一些Q-Balls的一些令人惊讶的通用特征,这些特征几乎不取决于潜力的细节。如我们在涉及其他重型或轻标量的可重新分解模型中,可以实现此处研究的多项式电位,正如我们用几个示例所示的那样。
Bosons carrying a conserved charge can form stable bound states if their Lagrangian contains attractive self-interactions. Bound-state configurations with a large charge $Q$ can be described classically and are denoted as Q-balls, their properties encoded in a non-linear differential equation. Here, we study Q-balls in arbitrary polynomial single-scalar-field potentials both numerically and via various analytical approximations. We highlight some surprising universal features of Q-balls that barely depend on the details of the potential. The polynomial potentials studied here can be realized in renormalizable models involving additional heavy or light scalars, as we illustrate with several examples.