论文标题
Anosov组,排名第一
Anosov groups that are indiscrete in rank one
论文作者
论文摘要
我们展示了$ \ mathsf {sl} _d(\ mathbb {r})$的Anosov子组,这些_d(\ Mathbb {r})$不会离散地嵌入任何排名的非属性类型的$ 1 $简单的谎言组,或者实际上是在此类LIE组的任何有限产品中。这些亚组是免费产品$γ*δ$的同构,其中$γ$是$ \ mathsf {f} _4^{( - 20)} $和$Δ$的均匀晶格,而$Δ$是$ \ m athsf {sp}(m,1)$,$ m,$ m,$ m \ geq 51 $。
We exhibit Anosov subgroups of $\mathsf{SL}_d(\mathbb{R})$ that do not embed discretely in any rank-$1$ simple Lie group of noncompact type, or indeed, in any finite product of such Lie groups. These subgroups are isomorphic to free products $Γ* Δ$, where $Γ$ is a uniform lattice in $\mathsf{F}_4^{(-20)}$ and $Δ$ is a uniform lattice in $\mathsf{Sp}(m,1)$, $m \geq 51$.