论文标题
满足通勤条件的SDE的高阶分裂方法
High order splitting methods for SDEs satisfying a commutativity condition
论文作者
论文摘要
在本文中,我们介绍了一种新的简单方法,用于开发和建立针对大型随机微分方程(SDE)的分裂方法的收敛性,包括加性,对角线和标量噪声类型。核心思想是将分裂方法视为替代SDE的驱动信号,即布朗运动和时间,并带有分段线性路径,该路径产生了一系列ODES $ - $ - $ - $ - 可以离散地产生数值方案。这种新的理解分裂方法的方式受到了艰难的路径理论的启发。我们表明,当驱动分段线性路径与布朗运动的某些迭代随机积分匹配时,可以获得高阶分裂方法。我们提出了一种一般证明方法,以建立类似于米尔斯坦和特列列这代山的一般框架的这些近似值的强烈收敛。也就是说,一旦获得了分裂方法获得局部误差估计,就会随后收敛速率。然后,可以轻松地将这种方法应用于SDE分裂方法的未来研究中。通过将最近开发的布朗运动积分的近似值纳入这些分段线性路径中,我们提出了几种高阶分裂方法,以满足某些通勤条件的SDE。在我们的实验中,包括Cox-Ingersoll-Ross模型和添加噪声SDE(嘈杂的Anharmonic振荡器,随机的Fitzhugh-Nagumo模型,不足的Langevin动力学),新的拆卸方法表现出$ O(H^{3/2}} $ O(H^{3/2})$和OUTERFERSSEMES SCHEMES SCEMES SEMESTINCTINCTION $ O(H^{3/2})的融合速率。
In this paper, we introduce a new simple approach to developing and establishing the convergence of splitting methods for a large class of stochastic differential equations (SDEs), including additive, diagonal and scalar noise types. The central idea is to view the splitting method as a replacement of the driving signal of an SDE, namely Brownian motion and time, with a piecewise linear path that yields a sequence of ODEs $-$ which can be discretized to produce a numerical scheme. This new way of understanding splitting methods is inspired by, but does not use, rough path theory. We show that when the driving piecewise linear path matches certain iterated stochastic integrals of Brownian motion, then a high order splitting method can be obtained. We propose a general proof methodology for establishing the strong convergence of these approximations that is akin to the general framework of Milstein and Tretyakov. That is, once local error estimates are obtained for the splitting method, then a global rate of convergence follows. This approach can then be readily applied in future research on SDE splitting methods. By incorporating recently developed approximations for iterated integrals of Brownian motion into these piecewise linear paths, we propose several high order splitting methods for SDEs satisfying a certain commutativity condition. In our experiments, which include the Cox-Ingersoll-Ross model and additive noise SDEs (noisy anharmonic oscillator, stochastic FitzHugh-Nagumo model, underdamped Langevin dynamics), the new splitting methods exhibit convergence rates of $O(h^{3/2})$ and outperform schemes previously proposed in the literature.