论文标题

干涉程度:干扰下因果推断的一般框架

Degree of Interference: A General Framework For Causal Inference Under Interference

论文作者

Ohnishi, Yuki, Karmakar, Bikram, Sabbaghi, Arman

论文摘要

通常用于有效因果推断的一种核心假设是实验单位之间没有干扰,即,实验单位的结果不受分配给其他实验单位的处理的影响。在现实生活实验中可以违反该假设,这显着使因果推断的任务变得复杂。随着潜在结果的数量的增加,将直接治疗效应与``溢出''效应相关的效果变得具有挑战性。目前缺乏方法,因为它们无法处理任意的未知干扰结构来允许对因果估计的推断。我们提出了一个通用框架,以解决现有方法的局限性。我们的框架基于``干扰程度''(DOI)的新概念。 DOI是一个单位级潜在变量,可捕获干扰的潜在结构。我们还开发了一种数据增强算法,该算法采用了阻塞的Gibbs采样器和贝叶斯非参数方法论,以对我们框架下的估计值进行推断。我们通过广泛的仿真研究和对随机实验的分析进行了研究,该实验研究了现金转移计划的影响,而干扰是一个关键问题。最终,我们的框架使我们能够在没有强大的结构假设对干扰的情况下推断因果效应。

One core assumption typically adopted for valid causal inference is that of no interference between experimental units, i.e., the outcome of an experimental unit is unaffected by the treatments assigned to other experimental units. This assumption can be violated in real-life experiments, which significantly complicates the task of causal inference. As the number of potential outcomes increases, it becomes challenging to disentangle direct treatment effects from ``spillover'' effects. Current methodologies are lacking, as they cannot handle arbitrary, unknown interference structures to permit inference on causal estimands. We present a general framework to address the limitations of existing approaches. Our framework is based on the new concept of the ``degree of interference'' (DoI). The DoI is a unit-level latent variable that captures the latent structure of interference. We also develop a data augmentation algorithm that adopts a blocked Gibbs sampler and Bayesian nonparametric methodology to perform inferences on the estimands under our framework. We illustrate the DoI concept and properties of our Bayesian methodology via extensive simulation studies and an analysis of a randomized experiment investigating the impact of a cash transfer program for which interference is a critical concern. Ultimately, our framework enables us to infer causal effects without strong structural assumptions on interference.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源