论文标题
量子通道的渐近学
Asymptotics of quantum channels
论文作者
论文摘要
我们讨论了有关与量子通道相关的Dicrete时间半群的渐近动力学的几个方面。通过使用渐近图的显式表达,该图描述了量子通道在其吸引子歧管上的作用,我们研究了排列在渐近动力学中的作用。我们表明,通常,它们使渐近进化是非自然的,并且与量子通道的分裂性有关。此外,我们得出了一些有关忠实和非信仰渠道渐近学的结果,并为渐近动力学建立了建设性的定理。
We discuss several aspects concerning the asymptotic dynamics of dicrete-time semigroups associated with a quantum channel. By using an explicit expression of the asymptotic map, which describes the action of the quantum channel on its attractor manifold, we investigate the role of permutations in the asymptotic dynamics. We show that, in general, they make the asymptotic evolution non-unitary, and they are related to the divisibility of the quantum channel. Also, we derive several results about the asymptotics of faithful and non-faithful channels, and we establish a constructive unfolding theorem for the asymptotic dynamics.