论文标题

具有多个空间变量的哈密顿系统:敷料,明确的解决方案和能量关系

Hamiltonian systems with several space variables: dressing, explicit solutions and energy relations

论文作者

Sakhnovich, Alexander

论文摘要

我们构建了具有多个空间变量的动态哈密顿系统的所谓的darboux转换和解决方案,$ \ frac {\partialψ} {\ partial t} = \ sum_ {k = 1}^r h_k(t) h_k(t)^*)$。特别是,在几个空间变量的重要且不够研究的情况下,这种系统是哈米尔顿港系统的类似物。相应的能源关系被写下。该方法通过几个示例说明了该方法,其中给出了明确的解决方案。

We construct so-called Darboux transformations and solutions of the dynamical Hamiltonian systems with several space variables $\frac{\partial ψ}{\partial t}=\sum_{k=1}^r H_k(t)\frac{\partial ψ}{\partial ζ_k}\,$ $( H_k(t)= H_k(t)^*)$. In particular, such systems are analogs of the port-Hamiltonian systems in the important and insufficiently studied case of several space variables. The corresponding energy relations are written down. The method is illustrated by several examples, where explicit solutions are given.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源