论文标题

杂乱环境的人造潜在基于现场的路径规划

Artificial Potential Field-Based Path Planning for Cluttered Environments

论文作者

Diab, Mosab, Mohammadkarimi, Mostafa, Rajan, Raj Thilak

论文摘要

在本文中,我们研究了在未知的杂物环境中资源约束移动试剂的路径规划算法,其中包括但不限于各种地面任务,例如,丛林中的无人机搜索和救援任务,例如,太空任务,例如,月球上流浪者的导航。特别是,我们将注意力集中在基于人造的潜在领域(APF)方法上,其中目标具有吸引力,而障碍对移动药物则具有反击。在本文中,我们提出了对经典APF算法的两个重大更新,这些更新可显着提高使用APF的路径计划的性能。首先,我们建议改进一种现有的经典方法,该方法在连续域上取代潜在的现场成本函数的梯度下降优化,并在一组预定义的点(称为细菌点)上优化了代理当前位置。我们的命题包括一个自适应超参数,该参数基于当前的环境测量,改变了与每个细菌点相关的潜在函数的值。我们提出的解决方案以融合到目标的方面提高了导航性能,而牺牲了计算复杂性的最小增加。其次,我们通过引入新的分支成本函数来进一步改善导航性能,提出细菌点的潜在现场成本函数。在一组蒙特卡洛模拟试验中测试了算法,每个试验的环境会发生变化。我们的仿真结果表明,与常规潜在现场方法相比,导航时间降低了25%,成功率更高300%,我们提出了未来的研究方向。

In this paper, we study path planning algorithms of resource constrained mobile agents in unknown cluttered environments, which include but are not limited to various terrestrial missions e.g., search and rescue missions by drones in jungles, and space missions e.g., navigation of rovers on the Moon. In particular, we focus our attention on artificial potential field (APF) based methods, in which the target is attractive while the obstacles are repulsive to the mobile agent. In this paper, we propose two major updates to the classical APF algorithm which significantly improve the performance of path planning using APF. First, we propose to improve an existing classical method that replaces the gradient descent optimization of the potential field cost function on a continuous domain with a combinatorial optimization on a set of predefined points (called bacteria points) around the agent's current location. Our proposition includes an adaptive hyperparameter that changes the value of the potential function associated to each bacteria point based on the current environmental measurements. Our proposed solution improves the navigation performance in terms of convergence to the target at the expense of minimal increase in computational complexity. Second, we propose an improved potential field cost function of the bacteria points by introducing a new branching cost function which further improves the navigation performance. The algorithms were tested on a set of Monte Carlo simulation trials where the environment changes for each trial. Our simulation results show 25% lower navigation time and around 300% higher success rate compared to the conventional potential field method, and we present future directions for research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源