论文标题
Lipschitz的梯度流量和用于高维稀缺数据的生成粒子算法
Lipschitz-regularized gradient flows and generative particle algorithms for high-dimensional scarce data
论文作者
论文摘要
储层计算是预测湍流的有力工具,其简单的架构具有处理大型系统的计算效率。然而,其实现通常需要完整的状态向量测量和系统非线性知识。我们使用非线性投影函数将系统测量扩展到高维空间,然后将其输入到储层中以获得预测。我们展示了这种储层计算网络在时空混沌系统上的应用,该系统模拟了湍流的若干特征。我们表明,使用径向基函数作为非线性投影器,即使只有部分观测并且不知道控制方程,也能稳健地捕捉复杂的系统非线性。最后,我们表明,当测量稀疏、不完整且带有噪声,甚至控制方程变得不准确时,我们的网络仍然可以产生相当准确的预测,从而为实际湍流系统的无模型预测铺平了道路。
We build a new class of generative algorithms capable of efficiently learning an arbitrary target distribution from possibly scarce, high-dimensional data and subsequently generate new samples. These generative algorithms are particle-based and are constructed as gradient flows of Lipschitz-regularized Kullback-Leibler or other $f$-divergences, where data from a source distribution can be stably transported as particles, towards the vicinity of the target distribution. As a highlighted result in data integration, we demonstrate that the proposed algorithms correctly transport gene expression data points with dimension exceeding 54K, while the sample size is typically only in the hundreds.