论文标题

部分可观测时空混沌系统的无模型预测

Time-dependent modelling of thin poroelastic films drying on deformable plates

论文作者

Hennessy, Matthew G., Craster, Richard V., Matar, Omar K.

论文摘要

了解载有颗粒的膜在干燥中的机械应力产生对于广泛的工业过程很重要。悬臂实验使已沉积在薄板上以进行定量的干燥膜中的应力。膜中的机械应力将传输到板并驱动弯曲。数学建模使膜应力可以从板偏转的测量值中推断出来。本文的目的是提出悬臂实验的简化模型,这些模型是使用渐近方法从连续力学的时间依赖方程得出的。使用非线性毛弹性和使用非线性弹性来描述膜。与Stoney样式相反,简化模型解释了厚度和应力不均匀的膜。薄膜模型还原为单个微分方程,该方程可以独立于板方程而求解。板模型还原为Foppl-von Karman(FVK)方程的扩展形式,该方程解释了作用在板表面的纵向牵引力中的梯度。 FVK方程的一致边界条件是通过在板的游离边缘下解决圣人边界层来得出的。渐近降低的模型与完整管理方程的有限元解决方案非常吻合。随着péclet数量的增加,与实验一致,板偏转的时间演变从$ t $从$ t $变为$ t^{1/2} $。

Understanding the generation of mechanical stress in drying, particle-laden films is important for a wide range of industrial processes. The cantilever experiment allows the stress in a drying film that has been deposited onto a thin plate to be quantified. Mechanical stresses in the film are transmitted to the plate and drive bending. Mathematical modelling enables the film stress to be inferred from measurements of the plate deflection. The aim of this paper is to present simplified models of the cantilever experiment that have been derived from the time-dependent equations of continuum mechanics using asymptotic methods. The film is described using nonlinear poroelasticity and the plate using nonlinear elasticity. In contrast to Stoney-like formulae, the simplified models account for films with non-uniform thickness and stress. The film model reduces to a single differential equation that can be solved independently of the plate equations. The plate model reduces to an extended form of the Foppl-von Karman (FvK) equations that accounts for gradients in the longitudinal traction acting on the plate surface. Consistent boundary conditions for the FvK equations are derived by resolving the Saint-Venant boundary layers at the free edges of the plate. The asymptotically reduced models are in excellent agreement with finite element solutions of the full governing equations. As the Péclet number increases, the time evolution of the plate deflection changes from $t$ to $t^{1/2}$, in agreement with experiments.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源