论文标题

关于几何学的奇数参数

On odd parameters in geometry

论文作者

Leites, Dimitry

论文摘要

1)1976年,研究简单的有限维复合物是Superalgebras,J.〜Bernstein和I,以及独立的M.〜Duflo,观察到某些无差异的矢量性lie superalgebras具有奇数参数的变形,并推测了其他简单的超级大管没有这样的变形(未公开)。在这里,我证明了这个猜想,并概述了简单的有限维复合物的已知分类超级级别,它们的演示,实现以及(非常粗略地)与简单的谎言(超级)代数(超级)代数在积极特征的领域上。 2)任何是表格的环形空间(一种歧管$ m $,矢量捆绑包上$ m $ $ m $)的截面称为拆分的任何超人。 Gawȩdzki(1977)和Batchelor(1979)证明了每个光滑的超人群都被拆分了。 1982年,绿色和帕拉莫多夫(P. Green)和帕拉莫多夫(Palamodov)表明,一个复杂的分析超曼佛可能不是分类的,即对分裂的超曼膜而不是差异。到目前为止,研究人员大部分考虑了分裂性的障碍。这导致他们得出的结论是,任何超数$ m | 1 $的超级势力均已分开。我将证明有超数$ m | 1 $的非分类超曼佛。例如,某些$ 1 | 1 $维度超级线,其分裂性的障碍物对应于奇数参数。

1) In 1976, looking at simple finite-dimensional complex Lie superalgebras, J.~Bernstein and I, and independently M.~Duflo, observed that certain divergence-free vectorial Lie superalgebras have deformations with odd parameters and conjectured that other simple Lie superalgebras have no such deformations (unpublished). Here, I prove this conjecture and overview the known classification of simple finite-dimensional complex Lie superalgebras, their presentations, realizations, and (very sketchily) relations with simple Lie (super)algebras over fields of positive characteristic. 2) Any supermanifold which is a ringed space of the form (a manifold $M$, the sheaf of sections of the exterior algebra of a vector bundle over $M$) is called split. Gawȩdzki (1977) and Batchelor (1979) proved that every smooth supermanifolds is split. In 1982, P. Green and Palamodov showed that a~complex-analytic supermanifold can be non-split, i.e., not diffeomorphic to a split supermanifold. So far, researchers considered, mostly, even obstructions to splitness. This lead them to the conclusion that any supermanifolds of superdimension $m|1$ is split. I'll show that there are non-split supermanifolds of superdimension $m|1$; for example, certain $1|1$-dimensional superstrings, the obstructions to their splitness correspond to odd parameters.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源