论文标题
通用域适应的统一最佳运输框架
Unified Optimal Transport Framework for Universal Domain Adaptation
论文作者
论文摘要
通用域适应性(UNIDA)旨在将知识从源域转移到目标域而没有标签集的任何约束。由于两个领域都可以举行私人类,因此在UNIDA中识别目标域对齐方式是一个必不可少的问题。大多数现有的方法需要手动指定或手动调整的阈值值来检测共同样本,因此由于共同类别的不同比率,它们很难扩展到更现实的Unida。此外,由于这些私人样本被视为一个整体,因此他们无法识别目标私人样本之间的不同类别。在本文中,我们建议在统一的框架下使用最佳运输(OT)来处理这些问题,即Uniot。首先,具有自适应填充的基于OT的部分对齐旨在检测常见类别,而无需任何预定义的阈值逼真的UNIDA。它可以根据从OT获得的分配矩阵的统计信息自动发现常见和私人类之间的内在差异。其次,我们提出了一种基于OT的目标表示学习,以鼓励样本的全球歧视和局部一致性,以避免过度依赖对来源的依赖。值得注意的是,Uniot是第一种能够自动发现和识别UNIDA目标域中私人类别的方法。因此,我们引入了一个新的度量标准评分,以根据普通样本的准确性和私人私有性能的聚类性能来评估性能。广泛的实验清楚地证明了Uniot在UNIDA的各种最新方法中的优势。
Universal Domain Adaptation (UniDA) aims to transfer knowledge from a source domain to a target domain without any constraints on label sets. Since both domains may hold private classes, identifying target common samples for domain alignment is an essential issue in UniDA. Most existing methods require manually specified or hand-tuned threshold values to detect common samples thus they are hard to extend to more realistic UniDA because of the diverse ratios of common classes. Moreover, they cannot recognize different categories among target-private samples as these private samples are treated as a whole. In this paper, we propose to use Optimal Transport (OT) to handle these issues under a unified framework, namely UniOT. First, an OT-based partial alignment with adaptive filling is designed to detect common classes without any predefined threshold values for realistic UniDA. It can automatically discover the intrinsic difference between common and private classes based on the statistical information of the assignment matrix obtained from OT. Second, we propose an OT-based target representation learning that encourages both global discrimination and local consistency of samples to avoid the over-reliance on the source. Notably, UniOT is the first method with the capability to automatically discover and recognize private categories in the target domain for UniDA. Accordingly, we introduce a new metric H^3-score to evaluate the performance in terms of both accuracy of common samples and clustering performance of private ones. Extensive experiments clearly demonstrate the advantages of UniOT over a wide range of state-of-the-art methods in UniDA.