论文标题
苔丝巨人过境巨头III:一个偏心的温暖木星支持巨型行星的时期分子关系,过时的星星
TESS Giants Transiting Giants III: An eccentric warm Jupiter supports a period-eccentricity relation for giant planets transiting evolved stars
论文作者
论文摘要
围绕迅速发展的恒星的行星命运尚不清楚。先前的研究表明,相对于主要序列种群,经过恒星的行星($ $ $ <$ <$ 100 d)往往具有更多的偏心轨道。在这里,我们介绍了TOI-4582 B的发现,A 0.94 $ \ pm $ 0.12 r $ _ \ MATHRM {J} $,0.53 $ \ pm $ 0.05 m $ _ $ _ \ MATHRM {J} $ PLANET每31.034天绕着Intermediate Mass-Mass-Mass-Mass-Mass-Mass-Mass-Mass-Mass-Mass-MAS我们发现,这个星球也处于偏心轨道上($ = 0.51 $ \ pm $ 0.05)。然后,我们比较发现过境发展的行星人口($ g $ <$ 3.8)的星星与透过主序列星的行星种群。我们发现,进化的恒星系统的中值轨道偏心率在周期中增长的速度明显高于其他类似的主序列系统,特别是对于仅检测到一个行星的系统。总的来说,我们观察到,平均行星偏心$ <e> $ <e> $ <e> $ <e> a $ + $ b $ b $ log $ _ {10} $($ p $)的人口具有一个单个过境星球,其中$ a $ =(-0.18 $ \ pm $ \ pm $ 0.08)和$ b $ =(0.38 $ \ $ $ \ $ \ pm $ 0.06),主要序列是主要的。即使控制了恒星质量和金属性,也可以看到这种趋势。这些系统似乎并不代表从偏心,长期行星轨道到圆形,短期轨道的稳定演化途径,因为轨道模型比较表明Inspiral时限标尺与轨道的分离或偏心率不相关。其他进化的行星系统的表征将区分恒星进化的影响与恒星质量和成分的影响。
The fate of planets around rapidly evolving stars is not well understood. Previous studies have suggested that relative to the main sequence population, planets transiting evolved stars ($P$ $<$ 100 d) tend to have more eccentric orbits. Here we present the discovery of TOI-4582 b, a 0.94 $\pm$ 0.12 R$_\mathrm{J}$, 0.53 $\pm$ 0.05 M$_\mathrm{J}$ planet orbiting an intermediate-mass subgiant star every 31.034 days. We find that this planet is also on a significantly eccentric orbit ($e$ = 0.51 $\pm$ 0.05). We then compare the population of planets found transiting evolved (log$g$ $<$ 3.8) stars to the population of planets transiting main sequence stars. We find that the rate at which median orbital eccentricity grows with period is significantly higher for evolved star systems than for otherwise similar main sequence systems, particularly for systems with only one planet detected. In general, we observe that mean planet eccentricity $<e>$ = $a$ + $b$log$_{10}$($P$) for the evolved population with a single transiting planet where $a$ = (-0.18 $\pm$ 0.08) and $b$ = (0.38 $\pm$ 0.06), significantly distinct from the main sequence planetary system population. This trend is seen even after controlling for stellar mass and metallicity. These systems do not appear to represent a steady evolution pathway from eccentric, long-period planetary orbits to circular, short period orbits, as orbital model comparisons suggest inspiral timescales are uncorrelated with orbital separation or eccentricity. Characterization of additional evolved planetary systems will distinguish effects of stellar evolution from those of stellar mass and composition.