论文标题
GPS:遗传迅速搜索有效的几次学习
GPS: Genetic Prompt Search for Efficient Few-shot Learning
论文作者
论文摘要
基于迅速的技术已夸大了改善验证语言模型的少量概括的巨大潜力。但是,他们的性能在很大程度上依赖于提示的手动设计,因此需要大量的人类努力。在本文中,我们介绍了基因及时搜索(GPS),以提示提示几次学习,该搜索利用遗传算法自动搜索高性能提示。 GPS不含梯度,不需要更新模型参数,而只需要一个小验证集。对不同数据集进行的实验证明了GP的有效性,GP的有效性优于手动提示的大幅度2.6分。我们的方法也比其他参数有效的调整方法(例如及时调谐)更好。
Prompt-based techniques have demostrated great potential for improving the few-shot generalization of pretrained language models. However, their performance heavily relies on the manual design of prompts and thus requires a lot of human efforts. In this paper, we introduce Genetic Prompt Search (GPS) to improve few-shot learning with prompts, which utilizes a genetic algorithm to automatically search for high-performing prompts. GPS is gradient-free and requires no update of model parameters but only a small validation set. Experiments on diverse datasets proved the effectiveness of GPS, which outperforms manual prompts by a large margin of 2.6 points. Our method is also better than other parameter-efficient tuning methods such as prompt tuning.