论文标题

GPS:遗传迅速搜索有效的几次学习

GPS: Genetic Prompt Search for Efficient Few-shot Learning

论文作者

Xu, Hanwei, Chen, Yujun, Du, Yulun, Shao, Nan, Wang, Yanggang, Li, Haiyu, Yang, Zhilin

论文摘要

基于迅速的技术已夸大了改善验证语言模型的少量概括的巨大潜力。但是,他们的性能在很大程度上依赖于提示的手动设计,因此需要大量的人类努力。在本文中,我们介绍了基因及时搜索(GPS),以提示提示几次学习,该搜索利用遗传算法自动搜索高性能提示。 GPS不含梯度,不需要更新模型参数,而只需要一个小验证集。对不同数据集进行的实验证明了GP的有效性,GP的有效性优于手动提示的大幅度2.6分。我们的方法也比其他参数有效的调整方法(例如及时调谐)更好。

Prompt-based techniques have demostrated great potential for improving the few-shot generalization of pretrained language models. However, their performance heavily relies on the manual design of prompts and thus requires a lot of human efforts. In this paper, we introduce Genetic Prompt Search (GPS) to improve few-shot learning with prompts, which utilizes a genetic algorithm to automatically search for high-performing prompts. GPS is gradient-free and requires no update of model parameters but only a small validation set. Experiments on diverse datasets proved the effectiveness of GPS, which outperforms manual prompts by a large margin of 2.6 points. Our method is also better than other parameter-efficient tuning methods such as prompt tuning.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源