论文标题
不确定性意识到交易者公司方法:可解释的股票价格预测捕获不确定性
Uncertainty Aware Trader-Company Method: Interpretable Stock Price Prediction Capturing Uncertainty
论文作者
论文摘要
机器学习是一种越来越受欢迎的工具,在预测股票价格方面有一些成功。一种有希望的方法是交易员〜(TC)方法,它考虑了股票市场的活力,并且具有很高的预测能力和可解释性。基于机器学习的库存预测方法在内,包括TC方法一直集中在点预测上。但是,在没有不确定性估计的情况下,点预测缺乏信誉量化,并引起了对安全性的担忧。本文中的挑战是制定一种将高预测能力和量化不确定性的能力相结合的投资策略。我们提出了一种新颖的方法,称为不确定性意识到交易者 - 公司方法(UTC)方法。这种方法的核心思想是通过将TC方法与概率建模合并,从而结合两个框架的优势,从而提供概率预测和不确定性估计。我们希望这将在捕获不确定性的同时保留TC方法的预测能力和解释性。从理论上讲,我们证明所提出的方法估计后方差,并且不引入原始TC方法中的其他偏见。我们根据合成和真实市场数据集对我们的方法进行全面评估。我们使用合成数据确认UTC方法可以检测到不确定性增加且预测困难的情况。我们还确认UTC方法可以检测数据生成分布的突然变化。我们使用实际市场数据证明,UTC方法比基线可以实现更高的回报和更低的风险。
Machine learning is an increasingly popular tool with some success in predicting stock prices. One promising method is the Trader-Company~(TC) method, which takes into account the dynamism of the stock market and has both high predictive power and interpretability. Machine learning-based stock prediction methods including the TC method have been concentrating on point prediction. However, point prediction in the absence of uncertainty estimates lacks credibility quantification and raises concerns about safety. The challenge in this paper is to make an investment strategy that combines high predictive power and the ability to quantify uncertainty. We propose a novel approach called Uncertainty Aware Trader-Company Method~(UTC) method. The core idea of this approach is to combine the strengths of both frameworks by merging the TC method with the probabilistic modeling, which provides probabilistic predictions and uncertainty estimations. We expect this to retain the predictive power and interpretability of the TC method while capturing the uncertainty. We theoretically prove that the proposed method estimates the posterior variance and does not introduce additional biases from the original TC method. We conduct a comprehensive evaluation of our approach based on the synthetic and real market datasets. We confirm with synthetic data that the UTC method can detect situations where the uncertainty increases and the prediction is difficult. We also confirmed that the UTC method can detect abrupt changes in data generating distributions. We demonstrate with real market data that the UTC method can achieve higher returns and lower risks than baselines.