论文标题
合奏运输平滑。第一部分:统一框架
Ensemble transport smoothing. Part I: Unified framework
论文作者
论文摘要
Smoothers是贝叶斯时间序列重新分析的算法。大多数操作的Smoother依靠仿射Kalman型转换或顺序重要的采样。这些策略占据了频谱的相反目的,该频谱交易计算效率和可扩展性的统计通用性和一致性:非高斯性仿射会使卡尔曼(Kalman)更新与真正的贝叶斯解决方案不一致,而成功的重要性抽样所需的整体大小则可能是挑衅的。本文从测量运输的角度重新讨论了平滑问题,这为贝叶斯推论提供了一致的先前转换的前景。我们通过提出一个一般的集合框架来利用这种能力来实现基于运输的平滑框架。在此框架内,我们基于非线性传输图来得出一组全面的平滑递归,并详细介绍了它们如何在完全非高斯设置中利用状态空间模型的结构。我们还描述了我们框架的特殊情况,出现了多少标准的Kalman型平滑算法。同伴论文(Ramgraber等,2023)探讨了更深入的非线性集合运输粉丝的实现。
Smoothers are algorithms for Bayesian time series re-analysis. Most operational smoothers rely either on affine Kalman-type transformations or on sequential importance sampling. These strategies occupy opposite ends of a spectrum that trades computational efficiency and scalability for statistical generality and consistency: non-Gaussianity renders affine Kalman updates inconsistent with the true Bayesian solution, while the ensemble size required for successful importance sampling can be prohibitive. This paper revisits the smoothing problem from the perspective of measure transport, which offers the prospect of consistent prior-to-posterior transformations for Bayesian inference. We leverage this capacity by proposing a general ensemble framework for transport-based smoothing. Within this framework, we derive a comprehensive set of smoothing recursions based on nonlinear transport maps and detail how they exploit the structure of state-space models in fully non-Gaussian settings. We also describe how many standard Kalman-type smoothing algorithms emerge as special cases of our framework. A companion paper (Ramgraber et al., 2023) explores the implementation of nonlinear ensemble transport smoothers in greater depth.