论文标题
语义本地交流:简单的复杂观点
Semantic-Native Communication: A Simplicial Complex Perspective
论文作者
论文摘要
语义通信使智能代理能够通过互动提取信息的含义(或语义),以执行协作任务。在本文中,我们从拓扑空间的角度研究了语义交流,其中高阶数据语义生活在简单的复合体中。具体而言,发射器首先将其数据映射到$ K $ - 订单的简单复合物中,然后学习其高阶相关性。简单结构和相应的特征被编码为潜在空间中的语义嵌入。随后,接收器解码结构并渗透缺失或扭曲的数据。发射器和接收器协作训练简单的卷积自动编码器,以完成语义通信任务。实验是在语义学者开放研究语料库的真实数据集上进行的,在通信过程中缺少或扭曲了语义嵌入的一部分。数值结果表明,简单的卷积自动编码器启用了语义通信有效地重建了简单功能,并以$ 95 \%$的精度推断丢失的数据,同时在通道噪声下实现稳定的性能。相反,传统的自动编码器启用通信无法推断任何丢失的数据。此外,我们的方法被证明可以通过在通信过程中学习提取的语义信息来有效地推断出失真的数据,而无需事先的简单结构知识。利用信息的拓扑性质,与几个基线相比,所提出的方法还显示出更可靠和有效的效率,尤其是在低信噪比(SNR)水平下。
Semantic communication enables intelligent agents to extract meaning (or semantics) of information via interaction, to carry out collaborative tasks. In this paper, we study semantic communication from a topological space perspective, in which higher-order data semantics live in a simplicial complex. Specifically, a transmitter first maps its data into a $k$-order simplicial complex and then learns its high-order correlations. The simplicial structure and corresponding features are encoded into semantic embeddings in latent space for transmission. Subsequently, the receiver decodes the structure and infers the missing or distorted data. The transmitter and receiver collaboratively train a simplicial convolutional autoencoder to accomplish the semantic communication task. Experiments are carried out on a real dataset of Semantic Scholar Open Research Corpus, where one part of the semantic embedding is missing or distorted during communication. Numerical results show that the simplicial convolutional autoencoder enabled semantic communication effectively rebuilds the simplicial features and infer the missing data with $95\%$ accuracy, while achieving stable performance under channel noise. In contrast, the conventional autoencoder enabled communication fails to infer any missing data. Moreover, our approach is shown to effectively infer the distorted data without prior simplicial structure knowledge at the receiver, by learning extracted semantic information during communications. Leveraging the topological nature of information, the proposed method is also shown to be more reliable and efficient compared to several baselines, notably at low signal-to-noise (SNR) levels.