论文标题
具有图神经网络的WLAN的分散渠道管理
Decentralized Channel Management in WLANs with Graph Neural Networks
论文作者
论文摘要
无线局域网(WLAN)管理多个访问点(AP),并将稀缺的无线电频率资源分配给APS,以满足相关用户设备的交通需求。本文考虑了WLAN中的通道分配问题,该问题最大程度地减少了AP之间的相互干扰,并提出了一个基于学习的解决方案,该解决方案可以以分散的方式实施。我们将通道分配问题作为无监督的学习问题,用图神经网络(GNNS)的无线电通道的控制策略,并以无模型的方式使用策略梯度方法来训练GNN。提出的方法允许由于GNN的分布性质而进行分散的实施,并且与网络排列相等。前者为大型网络方案提供了有效且可扩展的解决方案,而后者则使我们的算法独立于重新排序。提出了经验结果,以评估所提出的方法并证实理论发现。
Wireless local area networks (WLANs) manage multiple access points (APs) and assign scarce radio frequency resources to APs for satisfying traffic demands of associated user devices. This paper considers the channel allocation problem in WLANs that minimizes the mutual interference among APs, and puts forth a learning-based solution that can be implemented in a decentralized manner. We formulate the channel allocation problem as an unsupervised learning problem, parameterize the control policy of radio channels with graph neural networks (GNNs), and train GNNs with the policy gradient method in a model-free manner. The proposed approach allows for a decentralized implementation due to the distributed nature of GNNs and is equivariant to network permutations. The former provides an efficient and scalable solution for large network scenarios, and the latter renders our algorithm independent of the AP reordering. Empirical results are presented to evaluate the proposed approach and corroborate theoretical findings.