论文标题
FATNET:使用完全卷积光学神经网络进行分类的高分辨率内核
FatNet: High Resolution Kernels for Classification Using Fully Convolutional Optical Neural Networks
论文作者
论文摘要
本文描述了传统的硅内分类网络转换为具有高分辨率特征图和内核的光学全卷积神经网络。当使用自由空间4F系统加速神经网络的推理速度时,可以使用较高的特征图和内核分辨率,而不会损失帧速率。我们提出用于分类图像的FATNET,与标准卷积分类器相比,该图像与自由空间加速度更兼容。它通过在一个完全卷积的网络中执行两者,忽略了卷积特征提取和分类器密度层的标准组合。这种方法充分利用了4F自由空间系统中的并行性,并通过减少通道数量和增加分辨率来进行电子和光学之间的转换率更少,从而使网络在光学方面的速度要比现成的网络更快。为了证明FATNET的功能,它在GPU上使用CIFAR100数据集和4F系统的模拟器进行了训练,然后将结果与RESNET-18进行了比较。结果显示,与原始网络相比,卷积操作少8.2倍,其精度仅低6%。对于朝着即将到来的光学时代的方向训练深入学习的方法,这些都是有希望的结果。
This paper describes the transformation of a traditional in-silico classification network into an optical fully convolutional neural network with high-resolution feature maps and kernels. When using the free-space 4f system to accelerate the inference speed of neural networks, higher resolutions of feature maps and kernels can be used without the loss in frame rate. We present FatNet for the classification of images, which is more compatible with free-space acceleration than standard convolutional classifiers. It neglects the standard combination of convolutional feature extraction and classifier dense layers by performing both in one fully convolutional network. This approach takes full advantage of the parallelism in the 4f free-space system and performs fewer conversions between electronics and optics by reducing the number of channels and increasing the resolution, making the network faster in optics than off-the-shelf networks. To demonstrate the capabilities of FatNet, it trained with the CIFAR100 dataset on GPU and the simulator of the 4f system, then compared the results against ResNet-18. The results show 8.2 times fewer convolution operations at the cost of only 6% lower accuracy compared to the original network. These are promising results for the approach of training deep learning with high-resolution kernels in the direction towards the upcoming optics era.